

ARDUINO	PROJECT	HANDBOOK
25	PRACTICAL	PROJECTS	TO	GET	YOU	STARTED

MARK	GEDDES

SAN	FRANCISCO

ARDUINO	PROJECT	HANDBOOK.	Copyright	©	2016	by	Mark	Geddes.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or	mechanical,
including	photocopying,	recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior	written	permission	of	the
copyright	owner	and	the	publisher.

Printed	in	USA

First	printing

20	19	18	17	16					1	2	3	4	5	6	7	8	9

ISBN-10:	1-59327-690-7
ISBN-13:	978-1-59327-690-4

Publisher:	William	Pollock
Production	Editor:	Serena	Yang
Cover	and	Interior	Design:	Beth	Middleworth
Developmental	Editor:	Liz	Chadwick
Technical	Reviewer:	Christopher	Stanton
Copyeditor:	Rachel	Monaghan
Compositor:	Serena	Yang
Proofreader:	James	Fraleigh

Circuit	diagrams	made	using	Fritzing	(http://fritzing.org/).

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.	directly:

No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data:
Names:	Geddes,	Mark.
Title:	Arduino	project	handbook	:	25	practical	projects	to	get	you	started	/
					by	Mark	Geddes.
Description:	San	Francisco	:	No	Starch	Press,	[2016]	|	Includes	index.
Identifiers:	LCCN	2015033781|	ISBN	9781593276904	|	ISBN	1593276907
Subjects:	LCSH:	Programmable	controllers.	|	Microcontrollers--Programming.	|
					Science	projects--Design	and	construction.	|	Arduino	(Programmable
					controller)
Classification:	LCC	TJ223.P76	G433	2016	|	DDC	629.8/9551--dc23
LC	record	available	at	http://lccn.loc.gov/2015033781

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.	Other	product	and	company
names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol	with	every
occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,
with	no	intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution	has	been	taken	in	the
preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or	entity	with	respect	to
any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	information	contained	in	it.

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com
http://lccn.loc.gov/2015033781

CAMERON	AND	JEMMA,	YOU	ARE	THE	CREATORS	AND	MAKERS	OF	THE
FUTURE.	THIS	BOOK	IS	FOR	YOU!

CONTENTS

ACKNOWLEDGMENTS
INTRODUCTION
PROJECT	0:	GETTING	STARTED

PART	1:	LEDS
PROJECT	1:	PUSHBUTTON-CONTROLLED	LED
PROJECT	2:	LIGHT	DIMMER
PROJECT	3:	BAR	GRAPH
PROJECT	4:	DISCO	STROBE	LIGHT
PROJECT	5:	PLANT	MONITOR
PROJECT	6:	GHOST	DETECTOR

PART	2:	SOUND
PROJECT	7:	ARDUINO	MELODY
PROJECT	8:	MEMORY	GAME
PROJECT	9:	SECRET	KNOCK	LOCK

PART	3:	SERVOS
PROJECT	10:	JOYSTICK-CONTROLLED	LASER
PROJECT	11:	REMOTE	CONTROL	SERVO

PART	4:	LCDS
PROJECT	12:	LCD	SCREEN	WRITER
PROJECT	13:	WEATHER	STATION
PROJECT	14:	FORTUNE	TELLER
PROJECT	15:	REACTION	TIMER	GAME

PART	5:	NUMERIC	COUNTERS
PROJECT	16:	ELECTRONIC	DIE
PROJECT	17:	ROCKET	LAUNCHER

PART	6:	SECURITY
PROJECT	18:	INTRUDER	SENSOR

PROJECT	19:	LASER	TRIP	WIRE	ALARM
PROJECT	20:	SENTRY	GUN
PROJECT	21:	MOTION	SENSOR	ALARM
PROJECT	22:	KEYPAD	ENTRY	SYSTEM
PROJECT	23:	WIRELESS	ID	CARD	ENTRY	SYSTEM

PART	7:	ADVANCED
PROJECT	24:	RAINBOW	LIGHT	SHOW
PROJECT	25:	BUILD	YOUR	OWN	ARDUINO!

APPENDIX	A:	COMPONENTS
APPENDIX	B:	ARDUINO	PIN	REFERENCE

CONTENTS	IN	DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
THE	ARDUINO	REVOLUTION
ABOUT	THIS	BOOK
ORGANIZATION	OF	THIS	BOOK

PROJECT	0:	GETTING	STARTED
HARDWARE

THE	ARDUINO	UNO
POWER
BREADBOARDS
JUMPER	WIRES

PROGRAMMING	THE	ARDUINO
THE	IDE	INTERFACE
ARDUINO	SKETCHES
LIBRARIES

TESTING	YOUR	ARDUINO:	BLINKING	AN	LED
UNDERSTANDING	THE	SKETCH

PROJECT	COMPONENT	LIST
SETTING	UP	YOUR	WORKSPACE
EQUIPMENT	AND	TOOL	GUIDE
QUICK	SOLDERING	GUIDE

SAFETY	FIRST

PART	1:	LEDS

PROJECT	1:	PUSHBUTTON-CONTROLLED	LED
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	2:	LIGHT	DIMMER
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	3:	BAR	GRAPH

HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	4:	DISCO	STROBE	LIGHT
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	5:	PLANT	MONITOR
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	6:	GHOST	DETECTOR
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PART	2:	SOUND

PROJECT	7:	ARDUINO	MELODY
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	8:	MEMORY	GAME
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	9:	SECRET	KNOCK	LOCK
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PART	3:	SERVOS

PROJECT	10:	JOYSTICK-CONTROLLED	LASER
HOW	IT	WORKS
THE	BUILD
MOUNTING	THE	LASER

THE	SKETCH

PROJECT	11:	REMOTE	CONTROL	SERVO
HOW	IT	WORKS
THE	SETUP
THE	BUILD
THE	SKETCH

PART	4:	LCDS

PROJECT	12:	LCD	SCREEN	WRITER
HOW	IT	WORKS
PREPARING	THE	LCD	SCREEN
THE	BUILD
THE	SKETCH

PROJECT	13:	WEATHER	STATION
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	14:	FORTUNE	TELLER
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	15:	REACTION	TIMER	GAME
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PART	5:	NUMERIC	COUNTERS

PROJECT	16:	ELECTRONIC	DIE
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	17:	ROCKET	LAUNCHER
HOW	IT	WORKS
THE	BUILD
CREATE	A	WORKING	FUSE

THE	SKETCH

PART	6:	SECURITY

PROJECT	18:	INTRUDER	SENSOR
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	19:	LASER	TRIP	WIRE	ALARM
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	20:	SENTRY	GUN
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	21:	MOTION	SENSOR	ALARM
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	22:	KEYPAD	ENTRY	SYSTEM
HOW	IT	WORKS
TESTING	THE	KEYPAD
THE	BUILD
THE	SKETCH

PROJECT	23:	WIRELESS	ID	CARD	ENTRY	SYSTEM
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PART	7:	ADVANCED

PROJECT	24:	RAINBOW	LIGHT	SHOW
HOW	IT	WORKS
THE	BUILD
THE	SKETCH

PROJECT	25:	BUILD	YOUR	OWN	ARDUINO!
HOW	IT	WORKS
PREPARING	THE	CHIP
BUILDING	THE	ARDUINO	CIRCUIT

APPENDIX	A:	COMPONENTS
COMPONENTS	GUIDE

ARDUINO	UNO	R3
9V	BATTERY	PACK
BREADBOARD
LED
RESISTOR
PUSHBUTTON
POTENTIOMETER
HL-69	SOIL	SENSOR
PIEZO	BUZZER
SERVOMOTOR
JOYSTICK
INFRARED	LED	RECEIVER
LCD	SCREEN
DHT11	HUMIDITY	SENSOR
TILT	BALL	SWITCH
RGB	LED
SEVEN-SEGMENT	LED	DISPLAY
FOUR-DIGIT,	SEVEN-SEGMENT	SERIAL	DISPLAY
ULTRASONIC	SENSOR
PHOTORESISTOR
RC	V959	MISSILE	LAUNCHER
PIR	SENSOR
KEYPAD
RFID	READER
RGB	MATRIX
SHIFT	REGISTER
ATMEGA328P	CHIP
16	MHZ	CRYSTAL	OSCILLATOR
5V	REGULATOR
CAPACITOR
DISC	CAPACITOR
BATTERY	CLIP

RETAILER	LIST
DECODING	RESISTOR	VALUES

APPENDIX	B:	ARDUINO	PIN	REFERENCE

ACKNOWLEDGMENTS

Many	thanks	to	the	fantastic	team	at	No	Starch	Press,	particularly	Elizabeth	Chadwick	and	Serena
Yang,	for	their	support	and	guidance	in	the	creation	of	this	book.	Thanks	to	Christopher	Stanton
for	his	technical	reviews	and	suggestions.

This	book	wouldn’t	exist	if	it	wasn’t	for	the	inspirational	Arduino	founders:	Massimo	Banzi,
David	Cuartielles,	Tom	Igoe,	Gianluca	Martino,	and	David	Mellis.	Thank	you	for	introducing
me	and	the	world	to	the	wonder	that	is	Arduino.	Thanks	also	to	Ken	Shirriff,	Warwick	Smith,
Steven	de	Lannoy,	and	Abdullah	Alhazmy	for	kind	permission	to	reproduce	their	projects.

I	have	to	thank	my	wonderful	wife,	Emily,	for	being	so	supportive	and	patient	over	the	last
year	and	for	freeing	up	a	room	in	our	house	as	a	“man	cave”	so	I	could	put	together	all	these
projects—and	for	resisting	the	temptation	to	tidy	it	on	a	daily	basis!

Thank	you	to	my	parents,	Frank	and	Lorna,	for	allowing	me	the	freedom	as	a	child	to	take
things	apart	and	for	not	complaining	when	I	had	wires	everywhere.	If	not	for	their	support,	I
wouldn’t	have	the	passion	for	electronics	and	gadgets	that	I	still	have	today.	Thanks	also	to	David
and	Linda	for	their	fantastic	support,	encouragement,	and	belief.

INTRODUCTION

The	Arduino	is	a	small,	inexpensive	computer	that	can	be	programmed	to	control	endless
creations	limited	only	by	your	imagination.	As	you’ll	soon	see,	the	Arduino	can	be	used	to	make	a
whole	host	of	projects,	like	a	ghost	detector,	joystick-controlled	laser,	electronic	die,	laser	trip
wire	alarm,	motion	sensor	alarm,	keypad	entry	system,	and	many	others.	All	of	these	projects	are
easy	to	build	and	have	one	thing	in	common—they	use	the	power	of	the	Arduino.

In	the	early	1980s,	I	picked	up	a	great	Penguin	paperback	titled	something	like	Gadgets	and
Gizmos,	hidden	away	in	a	local	bookstore.	The	projects	were	simple	ones	like	making	a	working
lighthouse	using	flashlight	bulbs	and	building	a	revolving	display	table	using	an	old	clock.	The
ideas	in	that	book	sparked	my	imagination,	and	I’ve	been	creating	ever	since.

My	curiosity	led	me	to	take	apart	various	electrical	items	to	experiment	with	and	find	out	how
they	worked.	I	usually	struggled	to	put	them	back	together	but	amassed	a	good	selection	of
components	to	tinker	with.	(This	is	a	great	way	of	gathering	lots	of	parts,	by	the	way.)

I	remember	wiring	together	a	string	of	small	flashlight	bulbs	to	make	floodlights	for	my
Subbuteo	table-top	soccer	game	and	creating	a	loudspeaker	system	to	blast	out	music	at	the
halftime	break	in	a	game.	I	even	managed	to	extract	some	LEDs	from	a	Star	Wars	toy,	only	to
burn	them	out	because	I	didn’t	understand	what	a	resistor	was	at	the	time.	I	used	small	motors,
buzzers,	and	solar	cells	to	create	burglar	alarms	and	super	whizzy	cars,	and	I	burned	out	a	few
motors	too!

At	roughly	the	same	time	(1983),	Sinclair	Research	in	the	United	Kingdom	launched	the	ZX
Spectrum	48k	microcomputer,	introducing	home	computing	to	the	UK	mass	market.	(The
United	States	had	its	Commodore	64.)	While	intended	as	a	serious	computer,	the	ZX	Spectrum
inadvertently	lent	itself	more	to	gaming	due	to	its	inclusion	of	the	simple	programming	language
BASIC.	As	a	result,	software	houses	sprouted	in	bedrooms	across	the	country	as	people	rushed	to
build	games	for	the	ZX.

This	sparked	my	interest	in	programming,	but	at	the	time	I	couldn’t	combine	my	two
passions.	Physical	computing,	where	software	and	hardware	react	to	the	physical	world,	was
around	in	the	’80s	but	confined	to	the	realm	of	very	high-end	computing	and	robotics,	way	out	of
reach	of	most	households.	Now,	some	30	years	later,	with	the	introduction	of	the	Arduino,	I	find
myself	tinkering	again	with	electronics,	but	this	time	I	can	use	programming	to	bring	the	projects
to	life.

THE	ARDUINO	REVOLUTION
In	simple	terms,	the	Arduino	is	a	small	computer	that	can	be	programmed	to	connect	and	control
various	electronic	parts.	The	Arduino	has	a	number	of	pins	that	can	be	set	as	either	input,	which
means	they	can	receive	data	from	items	such	as	switches,	buttons,	and	sensors,	or	output,	which
means	they	send	data	to	control	items	such	as	motors,	lights,	and	buzzers.	This	type	of
programmable	development	board	is	better	known	as	a	microcontroller.

The	Arduino	project	began	in	Ivrea,	Italy,	in	2005	with	the	goal	of	creating	a	device	to	control

student-built	interactive	design	projects	that	would	be	less	expensive	than	other	prototyping
systems	available	at	the	time.	Founders	Massimo	Banzi	and	David	Cuartielles	named	the	project
after	a	local	bar	called	Arduino	(an	Italian	masculine	first	name	meaning	“strong	friend”).

The	Arduino	board	is	composed	of	two	main	elements:	the	hardware,	or	microcontroller,
which	is	the	brain	of	the	board,	and	the	software	that	you’ll	use	to	send	your	program	to	the	brain.
The	software,	called	the	Arduino	integrated	development	environment	(IDE),	is	available	free	for
download.

The	IDE	is	a	simple	interface	that	runs	on	a	computer	running	Windows,	OS	X,	or	Linux.
You	use	the	IDE	to	create	a	sketch	(an	Arduino	program)	that	you	then	upload	to	the	Arduino
board	using	a	PC	and	USB	cable.	The	sketch	tells	the	hardware	what	to	do.	I’ll	go	into	both	the
hardware	and	software	in	more	detail	in	the	next	couple	of	chapters.

The	Arduino	can	be	powered	by	batteries,	USB,	or	an	external	power	supply.	Once	the
Arduino	is	programmed,	it	can	be	disconnected	from	your	computer	and	will	run	independently
using	a	power	supply	or	batteries.

ABOUT	THIS	BOOK
What	was	it	that	encouraged	me	to	write	this	book?	The	Internet	is	bursting	with	tutorials,
videos,	and	articles	covering	the	Arduino	and	potential	projects,	but	many	lack	detailed	visuals	or
the	code	required	to	build	these	projects.	Like	the	Gizmos	and	Gadgets	book	that	inspired	me	many
years	ago,	this	book	is	intended	to	help	you	build	simple	projects	that	will	inspire	you	to	create
your	own	contraptions	using	the	skills	and	techniques	that	you’ll	learn.

In	this	book	you’ll	concentrate	on	creating	your	project	on	a	breadboard.	This	is	the	best	way
to	learn	about	how	circuits	work,	because	the	connections	are	not	permanent;	if	you	make	a
mistake,	you	can	just	unplug	the	wire	or	component	and	try	again.	Each	project	has	step-by-step
instructions	for	connecting	the	main	components,	along	with	photographs	to	help	you	with
layout.	Tables	are	used	in	most	projects	for	quick	reference.

The	projects	will	have	a	circuit	diagram	to	show	the	connections	clearly,	like	that	in	Figure	1.
These	have	been	created	with	the	Fritzing	program	(http://www.fritzing.org/),	a	free,	open	source
program	for	creating	visual	schematics	of	your	projects.

http://www.fritzing.org/

FIGURE	1:
Example	of	a	Fritzing	diagram

Each	project	also	has	the	code	required	to	program	your	Arduino,	so	you	don’t	need	to	worry
about	learning	to	program	before	you	begin.	The	early	projects	provide	simple	explanations	of
what’s	happening	in	the	code,	to	help	you	understand	the	process	of	programming	enough	to
make	your	own	modifications	if	you	want	to.	If	you	don’t	want	to	type	all	the	code,	you	can
download	the	programs	from	http://www.nostarch.com/arduinohandbook/.

The	projects	in	this	book	begin	with	the	basics	and	progress	steadily	to	more	complex	designs.
That	said,	this	book	won’t	go	deeply	into	electronics	theory	or	programming,	but	I	will	give	you	a
good	starting	point.	I’ve	written	this	book	to	teach	you	how	to	create	your	own	gadgets.	By	giving
you	the	technical	know-how,	I	allow	you	to	focus	on	the	creative	design	element.	The	idea	is	that
learning	the	function	of	circuits	can	open	up	your	imagination	to	ways	of	using	those	circuits
practically.

This	book	gives	practical	information	so	you	can,	for	example,	reference	the	pin	connections
and	replicate	them	when	needed	in	a	different	project.	You	can	also	combine	projects	to	make
more	complicated	and	interesting	gadgets.

A	lot	of	Arduino	books	focus	on	the	programming	element,	and	that’s	great	for	a	certain	kind
of	learning,	but	I	think	there	is	a	place	for	plug-and-play	electronics.	By	following	the	steps	in	the
projects,	you	will	learn	as	you	go.

ORGANIZATION	OF	THIS	BOOK
The	book	progresses	from	simple	to	more	complex	projects	as	follows	to	help	you	build	your
skills	and	learn	about	components:

Part	I:	LEDs	You’ll	start	by	learning	how	to	control	simple	LEDs	with	buttons	and	variable
resistors,	and	then	combine	components	to	build	disco	strobe	lights,	plant	monitors	to	tell	you

http://www.nostarch.com/arduinohandbook/

when	your	plant	needs	watering,	and	even	a	ghost	detector.
Part	II:	Sound	In	this	part,	you’ll	learn	about	the	piezo	buzzer,	a	very	useful	device	that	emits	and
can	also	detect	sound.	You’ll	make	music	with	the	Arduino	Melody,	create	a	simple	and	fun
memory	game,	and	set	up	a	secret	code	lock	system	that	detects	the	volume	of	a	knock.
Part	III:	Servos	These	projects	all	use	the	servomotor,	a	small	motor	with	an	arm	that	can	be
used	for	a	whole	host	of	purposes.	You’ll	build	a	joystick-controlled	laser	and	decode	a	remote
control	so	you	can	move	your	servo	with	buttons	on	the	remote.
Part	IV:	LCDs	The	LCD	screen	is	useful	in	lots	of	projects	for	displaying	messages	and	results.
In	this	part,	you’ll	learn	how	to	set	up	an	LCD	screen,	build	a	weather	station	to	report
conditions,	and	set	up	two	games:	a	fortune	teller	and	a	reaction	timer	game.
Part	V:	Numeric	Counters	You’ll	use	LED	number	displays	in	this	part	to	build	an	electronic
die	and	a	rocket	launcher	countdown	system	that	sets	off	a	fuse.
Part	VI:	Security	These	more	complex	projects	will	show	you	how	to	protect	your	space	with
trip	wires	and	intruder	trackers,	motion	sensors	that	trigger	alarms	or	sentry	missiles,	and	security
systems	that	use	keypads	and	card	readers	to	keep	unauthorized	persons	out.
Part	VII:	Advanced	In	this	final	part,	you’ll	combine	the	Arduino	with	a	matrix	of	lights	to	create
the	Rainbow	Light	Show.	Then	you’ll	round	off	your	skills	by	building	your	own	Arduino	to	use
in	future	projects.

These	projects	don’t	have	to	be	built	in	order,	so	if	you	see	something	you	like	and	feel
confident	enough	to	take	it	on,	you	can	skip	to	it.	I	recommend	you	try	out	some	of	the	earlier
projects	first,	though,	as	you’ll	find	information	there	that’s	useful	for	more	complicated	builds.

I’ve	written	the	book	that	I	was	looking	for	but	couldn’t	find	when	I	started	out	with	the
Arduino.	I	hope	that	you’ll	enjoy	reading	and	working	through	this	book	as	much	as	I’ve	enjoyed
writing	it.

PROJECT	0:	GETTING	STARTED
BEFORE	YOU	START	BUILDING	WITH	THE	ARDUINO,	THERE	ARE	A	FEW
THINGS	YOU	NEED	TO	KNOW	AND	DO.	LET’S	TAKE	A	LOOK	AT	THE
HARDWARE	AND	SOFTWARE	YOU’LL	NEED	FOR	THIS	BOOK	AND	HOW	TO
SET	UP	A	WORKSTATION.	YOU’LL	THEN	TEST	OUT	THE	ARDUINO	WITH	A
SIMPLE	LED	PROJECT	AND	GET	STARTED	WITH	A	FEW	TECHNIQUES
THAT	WILL	COME	IN	HANDY,	LIKE	SOLDERING	AND	DOWNLOADING
USEFUL	CODE	LIBRARIES.

HARDWARE
First	let’s	look	at	the	Arduino	Uno	board	and	a	few	pieces	of	hardware	that	you’ll	use	in	almost
every	project.

The	Arduino	Uno
There	are	numerous	types	of	Arduino	boards	available,	but	this	book	will	exclusively	use	the	most
popular	one—the	Arduino	Uno,	shown	in	Figure	0-1.	The	Arduino	Uno	is	open	source	(meaning
its	designs	may	be	freely	copied),	so	in	addition	to	the	official	board,	which	costs	about	$25,	you’ll
find	numerous	compatible	clone	boards	for	around	$15.

Let’s	walk	through	the	different	elements	of	the	Arduino	Uno.

FIGURE	0-1:
The	Arduino	Uno	board

The	Arduino	controls	components	you	attach	to	it,	like	motors	or	LEDs,	by	sending
information	to	them	as	output	(information	sent	out	from	the	Arduino).	Data	that	the	Arduino
reads	from	a	sensor	is	input	(information	going	in	to	the	Arduino).	There	are	14	digital
input/output	pins	(pins	0–13).	Each	can	be	set	to	either	input	or	output,	and	Appendix	B	has	a	full
pin	reference	table.

Power
The	Arduino	Uno	board	is	powered	from	your	computer’s	USB	port	when	you	connect	it	to	your
PC	to	upload	a	program.	When	the	Arduino	is	not	linked	to	your	PC,	you	can	run	it
independently	by	connecting	a	9-volt	AC	adapter	or	9-volt	battery	pack	with	a	2.1	mm	jack,	with
the	center	pin	connected	to	the	positive	wire,	shown	in	Figure	0-2.	Simply	insert	the	jack	into	the
power	socket	of	the	Arduino.

FIGURE	0-2:
A	9-volt	battery	pack,	which	you	can	plug	into	the	Arduino	to	give	it	power

Breadboards
A	breadboard	acts	as	a	construction	base	for	electronics	prototyping.	All	of	the	projects	in	this	book
use	a	breadboard	instead	of	soldering.

The	word	breadboard	dates	back	to	when	electronics	projects	were	created	on	wooden	boards.
Nails	were	hammered	into	the	wood	and	wires	wrapped	around	them	to	connect	components
without	the	use	of	solder.	Today’s	breadboards,	such	as	the	one	shown	in	Figure	0-3,	are	made	of
plastic	with	predrilled	holes	(called	tie	points)	into	which	you	insert	components	or	wires	that	are
held	in	place	by	clips.	The	holes	are	connected	by	strips	of	conductive	material	that	run
underneath	the	board.

FIGURE	0-3:
Breadboard	connections

Breadboards	come	in	various	sizes.	To	build	the	projects	in	this	book,	you’ll	need	four
breadboards:	two	full-size,	typically	with	830	holes;	one	half-size	with	420	holes;	and	one	mini
with	170	holes.	The	full-size	breadboard	is	ideal	for	projects	that	use	an	LCD	screen	or	a	lot	of
components,	and	the	half-size	and	mini	boards	are	best	for	smaller	projects.	I	recommend	that	for
the	projects	in	this	book	you	buy	breadboards	that	look	like	the	one	shown	in	Figure	0-3,	with	red
and	blue	lines	and	a	center	break	between	the	holes.

TIP
It’s	conventional	to	use	red	wires	for	connections	to	5V	and	black	wires	for	connections	to	ground	(GND),	so
you	can	easily	tell	which	is	which.	The	rest	of	the	wires	can	be	your	choice	of	color.

The	main	board	area	has	30	columns	of	tie	points	that	are	connected	vertically,	as	shown	in
Figure	0-3.	There	is	a	break	in	the	center	of	the	board,	which	you’ll	often	have	to	straddle	with
components	to	make	your	circuit.	This	break	helps	to	connect	the	pins	individually	so	they	are
not	shorted	together	unintentionally,	which	can	doom	your	project	and	even	damage	your
components.

The	blue	and	red	lines	at	the	top	and	bottom	are	power	rails	that	you	use	to	power	the
components	inserted	in	the	main	breadboard	area	(see	Figure	0-4).	The	power	rails	connect	all	the
holes	in	the	rail	horizontally;	the	red	lines	are	for	positive	power	and	the	blue	lines	for	negative
power	(or	ground,	as	you’ll	often	see	it	referred	to).

FIGURE	0-4:
Positive	and	negative	breadboard	rails

Jumper	Wires
You’ll	use	jumper	wires	to	make	connections	on	the	breadboard.	Jumper	wires	are	solid-core	wires
with	a	molded	plastic	holder	on	each	end	that	makes	it	easier	to	insert	and	remove	the	wires.	(You
could	use	your	own	wire	if	you	have	it,	but	make	sure	to	use	solid-core	wire,	as	stranded	wire	is
not	strong	enough	to	push	into	the	hole	clips.)

When	you	insert	a	jumper	wire	into	a	breadboard	hole,	it’s	held	in	place	beneath	the	board	by
a	small	spring	clip,	making	an	electrical	connection	in	that	row	that	typically	consists	of	five	holes.
You	can	then	place	a	component	in	an	adjoining	hole	to	help	create	a	circuit,	as	shown	in	Figure
0-5.

FIGURE	0-5:
An	example	breadboard	circuit

PROGRAMMING	THE	ARDUINO
To	make	our	projects	do	what	we	want,	we	need	to	write	programs	that	give	the	Arduino
instructions.	We	do	so	using	a	tool	called	the	Arduino	integrated	development	environment	(IDE).
The	Arduino	IDE	is	free	to	download	from	http://www.arduino.cc/,	and	will	run	on	Windows,	OS
X,	and	Linux.	It	enables	you	to	write	computer	programs	(a	set	of	step-by-step	instructions,
known	as	sketches	in	the	Arduino	world)	that	you	then	upload	to	the	Arduino	using	a	USB	cable.
Your	Arduino	will	carry	out	the	instructions	based	on	its	interaction	with	the	outside	world.

NOTE
Because	the	IDE	versions	can	change	fairly	quickly,	I	won’t	take	you	through	installing	them,	but	you	should
find	installation	straightforward.	All	versions	of	the	IDE	and	full	details	of	how	to	install	for	your	operating
system	are	available	online	at	http://www.arduino.cc/.

The	IDE	Interface
When	you	open	the	Arduino	IDE,	it	should	look	very	similar	to	Figure	0-6.

The	IDE	is	divided	into	a	toolbar	at	the	top,	with	buttons	for	the	most	commonly	used
functions;	the	code	or	sketch	window	in	the	center,	where	you’ll	write	or	view	your	programs;	and
the	Serial	Output	window	at	the	bottom.	The	Serial	Output	window	displays	communication
messages	between	your	PC	and	the	Arduino,	and	will	also	list	any	errors	if	your	sketch	doesn’t
compile	properly.

http://www.arduino.cc/
http://www.arduino.cc/

FIGURE	0-6:
The	Arduino	IDE

Arduino	Sketches
I’ll	give	you	the	sketch	for	each	project	within	the	relevant	project,	and	talk	through	it	there.	All	of
the	sketches	are	available	to	download	from	http://www.nostarch.com/arduinohandbook/.

Like	any	program,	sketches	are	a	very	strict	set	of	instructions,	and	very	sensitive	to	errors.	To
make	sure	you’ve	copied	the	sketch	correctly,	press	the	green	check	mark	at	the	top	of	the	screen.
This	is	the	Verify	button,	and	it	checks	for	mistakes	and	tells	you	in	the	Serial	Output	window
whether	the	sketch	has	compiled	correctly.	If	you	get	stuck,	you	can	always	download	the	sketch
and	then	copy	and	paste	it	into	the	IDE.

Libraries
In	the	Arduino	world,	a	library	is	a	small	piece	of	code	that	carries	out	a	specific	function.	Rather
than	enter	this	same	code	repeatedly	in	your	sketches,	you	can	add	a	command	that	borrows	code
from	the	library.	This	shortcut	saves	time	and	makes	it	easy	for	you	to	connect	to	items	such	as	a
sensor,	display,	or	module.

http://www.nostarch.com/arduinohandbook/

The	Arduino	IDE	includes	a	number	of	built-in	libraries—such	as	the	LiquidCrystal	library,
which	makes	it	easy	to	talk	to	LCD	displays—and	there	are	many	more	available	online.	To	create
the	projects	in	the	book,	you	will	need	to	import	the	following	libraries:	RFID,	Tone,	Pitches,
Keypad,	Password,	Ultrasonic,	NewPing,	IRRemote,	and	DHT.	You’ll	find	all	of	the	libraries	you
need	at	http://www.nostarch.com/arduinohandbook/.

Once	you’ve	downloaded	the	libraries,	you’ll	need	to	install	them.	To	install	a	library	in
Arduino	version	1.0.6	and	higher,	follow	these	steps:

1.	 Choose	Sketch	 	Include	Library	 	Add	.ZIP	Library.

2.	 Browse	to	the	ZIP	file	you	downloaded	and	select	it.	For	older	versions	of	Arduino,	you’ll
need	to	unzip	the	library	file	and	then	put	the	whole	folder	and	its	contents	into	the
sketchbook/libraries	folder	on	Linux,	My	Documents\Arduino\Libraries	on	Windows,	or
Documents/Arduino/libraries	on	OS	X.

To	install	a	library	manually,	go	to	the	ZIP	file	containing	the	library	and	uncompress	it.	For
example,	if	you	were	installing	a	library	called	keypad	in	a	compressed	file	called	keypad.zip,	you
would	uncompress	keypad.zip,	which	would	expand	into	a	folder	called	keypad,	which	in	turn
contains	files	like	keypad.cpp	and	keypad.h.	Once	the	ZIP	file	was	expanded,	you	would	drag	the
keypad	folder	into	the	libraries	folder	on	your	operating	system:	sketchbook/libraries	in	Linux,	My
Documents\Arduino\Libraries	on	Windows,	and	Documents/Arduino/libraries	on	OS	X.	Then	restart
the	Arduino	application.

Libraries	are	listed	at	the	start	of	a	sketch	and	are	easily	identified	because	they	begin	with	the
command	#include.	Libraries	are	surrounded	by	angle	brackets,	<>,	and	end	with	.h,	as	in	the
following	call	to	the	Servo	library:

#include	<Servo.h>

Go	ahead	and	install	the	libraries	you’ll	need	for	the	projects	now	to	save	yourself	a	bit	of	time
later.

TESTING	YOUR	ARDUINO:	BLINKING	AN	LED
Now	that	you’ve	seen	the	hardware	and	software,	let’s	begin	our	tour	with	the	classic	first	Arduino
project:	blinking	a	light	emitting	diode	(LED).	Not	only	is	this	the	simplest	way	to	make	sure	that
your	Arduino	is	working	correctly,	but	it	will	also	introduce	you	to	a	simple	sketch.	As	I
mentioned	earlier,	a	sketch	is	just	a	series	of	instructions	that	run	on	a	computer.	The	Arduino	can
hold	only	one	sketch	at	a	time,	so	once	you	upload	your	sketch	to	your	Arduino,	that	sketch	will
run	every	time	the	Arduino	is	switched	on	until	you	upload	a	new	one.

For	this	project	we’ll	use	the	Blink	example	sketch	that	comes	with	the	Arduino	IDE.	This
program	turns	on	an	LED	for	1	second	and	then	off	for	1	second,	repeatedly.	An	LED	emits	light
when	a	small	current	is	passed	through	it.	The	LED	will	work	only	with	current	flowing	in	one
direction,	so	the	longer	wire	must	connect	to	a	positive	power	connection.	LEDs	also	require	a
current	limiting	resistor;	otherwise,	they	may	burn	out.	There	is	a	built-in	resistor	inline	with	pin
13	of	the	Arduino.

http://www.nostarch.com/arduinohandbook/

Follow	these	steps	to	set	up	your	test:

1.	 Insert	the	long	positive	leg	(also	known	as	+5V	or	anode)	of	the	LED	into	pin	13	on	the
Arduino,	as	shown	in	Figure	0-7.	Connect	the	short	negative	leg	(also	known	as	cathode)	to	the
GND	pin	next	to	pin	13.

1.	 FIGURE	0-7:
The	Blink	project	setup

2.	 Connect	the	Arduino	to	your	computer	with	the	USB	cable.

3.	 Enter	the	following	sketch	into	the	IDE.

➊	//	Blinking	LED	Project
➋	int	led	=	13;
➌	void	setup()	{
➍			pinMode(led,	OUTPUT);
			}

➎	void	loop()	{
➏			digitalWrite(led,	HIGH);
➐			delay(1000);
➑			digitalWrite(led,	LOW);
➒			delay(1000);
➓	}

4.	 Click	the	Verify	button	(which	looks	like	a	check	mark)	to	confirm	that	the	sketch	is	working
correctly.

5.	 Now	click	the	Upload	button	to	send	the	sketch	to	your	Arduino.

Understanding	the	Sketch
Here’s	what’s	happening	on	each	line	of	the	sketch:

➊	This	is	a	comment.	Any	line	in	your	program	starting	with	//	is	meant	to	be	read	by	the	user
only,	and	is	ignored	by	the	Arduino,	so	use	this	technique	to	enter	notes	and	describe	your	code
(called	commenting	your	code).	If	a	comment	extends	beyond	one	line,	start	the	first	line	with	/*
and	end	the	comment	with	*/.	Everything	in	between	will	be	ignored	by	the	Arduino.

➋	This	gives	pin	13	the	name	led.	Every	mention	of	led	in	the	sketch	refers	to	pin	13.

➌	This	means	that	the	code	between	the	curly	brackets,	{},	that	follow	this	statement	will	run
once	when	the	program	starts.	The	open	curly	bracket,	{,	begins	the	setup	code.

➍	This	tells	the	Arduino	that	pin	13	is	an	output	pin,	indicating	that	we	want	to	send	power	to	the
LED.	The	close	curly	bracket,	},	ends	the	setup	code.

➎	This	creates	a	loop.	Everything	between	the	curly	brackets,	{},	after	the	loop()	statement	will
run	once	the	Arduino	is	powered	on	and	then	repeat	until	it	is	powered	off.

➏	This	tells	the	Arduino	to	set	led	(pin	13)	to	HIGH,	which	sends	power	to	that	pin.	Think	of	it	as
switching	the	pin	on.	In	this	sketch,	this	turns	on	the	LED.

➐	This	tells	the	Arduino	to	wait	for	1	second.	Time	on	the	Arduino	is	measured	in	milliseconds,
so	1	second	=	1,000	milliseconds.

➑	This	tells	the	Arduino	to	set	led	(pin	13)	to	LOW,	which	removes	power	and	switches	off	the	pin.
This	turns	off	the	LED.

➒	Again	the	Arduino	is	told	to	wait	for	1	second.

➓	This	closing	curly	bracket	ends	the	loop.	All	code	that	comes	after	the	initial	setup	must	be
enclosed	within	curly	brackets.	A	common	cause	of	errors	in	a	sketch	is	missing	open	or	close
brackets,	which	will	prevent	your	sketch	from	compiling	correctly.	After	this	curly	bracket,	the
sketch	goes	back	to	the	start	of	the	loop	at	➎.

Running	this	code	should	make	your	LED	flash	on	and	off.	Now	that	you’ve	tested	your
Arduino	and	understand	how	a	sketch	works	and	how	to	upload	it,	we’ll	take	a	look	next	at	the
components	you’ll	need	to	carry	out	all	of	the	projects	in	this	book.	Appendix	A	has	more	details
about	each	component,	what	it	looks	like,	and	what	it	does.

PROJECT	COMPONENT	LIST
This	is	a	complete	list	of	the	items	you’ll	need	in	order	to	complete	the	projects	in	this	book.	The
most	important	part,	of	course,	is	the	Arduino	board	itself—all	projects	use	the	Arduino	Uno	R3
version.	As	mentioned	earlier,	only	the	official	boards	are	named	Arduino,	but	clone	boards
compatible	with	the	software	can	be	bought	from	companies	like	SlicMicro,	Sainsmart,	and
Adafruit	and	will	be	referred	to	as	Uno	R3	or	Arduino	Uno	R3	compatible.	(You’ll	find	a	list	of
official	suppliers	at	http://arduino.cc/en/Main/Buy/.)

Each	project	will	list	the	required	items	first,	so	if	you	want	to	complete	only	a	few	of	the
projects,	you	can	flip	to	a	project	that	appeals	to	you	and	obtain	just	those	components.	Although
you	can	buy	each	item	individually,	I	suggest	buying	an	electronics	hobby	starter	kit	or	Arduino
kit.	You’ll	find	many	of	them	online,	and	there	is	a	list	of	suggested	suppliers	in	Appendix	A.	The
components	marked	with	an	asterisk	(*)	can	all	be	found	in	an	Arduino	Bare	Bones	Kit,	which	can
save	you	a	bit	of	time	and	money.

1	Arduino	Uno	R3	(or	compatible	alternative)
1	9V	battery	pack	with	2.1	mm	jack
2	full-size	breadboards
1	half-size	breadboard
1	mini	breadboard
50	male-to-male	jumper	wires

http://arduino.cc/en/Main/Buy/

10	female-to-male	jumper	wires
30	220-ohm	resistors
10	330-ohm	resistors
1	470-ohm	resistor
1	10k-ohm	resistor
1	1M-ohm	resistor
40	5	mm	LEDs:	red,	green,	yellow,	blue	(10	of	each	color)
1	50k-ohm	potentiometer
4	momentary	tactile	four-pin	pushbuttons
1	HL-69	hygrometer	soil	moisture	sensor
1	piezo	buzzer
1	3.5	mm	phone	jack
2	Tower	Pro	SG90	9g	servomotors
1	photoresistor	(also	known	as	a	light	resistor,	or	LDR)
1	analog	five-pin,	two-axis	joystick	module
1	pan-and-tilt	housing	module
1	four-pin	HC-SR04	ultrasonic	range	sensor
1	4×4	membrane	keypad
1	seven-segment	LED	display
1	four-digit,	seven-segment	serial	display
1	DHT11	humidity	sensor
1	16x2	LCD	screen	(Hitachi	HD44780	compatible)
1	tilt	ball	switch
1	8×8	RGB	LED	matrix
1	38	kHz	infrared	(IR)	sensor
1	HC	SR501	PIR	(passive	infrared)	sensor
1	Mifare	RFID	RC-522	reader,	card,	and	fob
4	74HC595	shift	registers
1	low-powered	laser-pointer	pen
1	WLToys	RC	V959	missile	launcher
1	ATMEL	ATmega328p	chip*
1	16	MHz	crystal	oscillator	(HC-495)*
1	L7805cv	5V	regulator*
2	100	μF	electrolytic	capacitors*
1	PP3	9V	battery	clip*
2	22	pF	disc	capacitors*
9V	battery*

SETTING	UP	YOUR	WORKSPACE
To	get	the	most	out	of	working	with	the	Arduino,	you	should	create	a	workspace	that	allows	you
to	let	your	imagination	loose	but	keeps	you	organized	at	the	same	time.	If	possible,	it	should	also
be	a	dedicated	space,	something	like	the	one	shown	in	Figure	0-8;	some	projects	can	take	a	few
hours	to	put	together,	so	you	may	not	have	time	to	finish	them	all	in	one	sitting,	and	there	is
nothing	worse	than	having	to	stop	and	put	everything	away	only	to	get	it	all	out	again	next	time.

FIGURE	0-8:
An	example	workspace

A	workspace	can	be	anywhere,	but	the	main	thing	you	will	need	is	a	table	or	flat	surface	big
enough	for	your	computer	or	laptop	(so	you	can	use	the	IDE	and	upload	programs	easily)	and	for
you	to	actually	do	your	building.

You	may	also	want	space	to	keep	your	components	at	hand	as	well	as	any	tools	you	may	need,
such	as	a	soldering	iron,	wire	strippers,	hobby	knife,	hobby	drill,	and	so	on.	It	may	not	be	practical
to	have	all	of	your	tools	and	materials	out	all	of	the	time,	so	it’s	a	good	idea	to	buy	some	hobby	or
craft	cases	to	store	your	parts.	I	use	one	bin	for	equipment,	like	soldering	irons	or	wire	cutters,	and
smaller	bins	for	components.	Plastic	boxes	for	fishing	tackle	or	craft	use	are	perfect	for	storing
components	(see	Figure	0-9),	and	a	cantilever	toolbox	is	great	to	house	your	soldering	iron	and
other	small	equipment	(Figure	0-10).	Small	plastic	boxes,	usually	designed	to	store	jewelry	or	craft
supplies,	are	also	a	good	way	to	store	very	small	components	(Figure	0-11).

FIGURE	0-9:
Tackle	or	craft	boxes	are	handy	for	storing	components.

FIGURE	0-10:
A	cantilever	toolbox	works	well	for	storing	a	soldering	iron	and	other	small	tools.

FIGURE	0-11:
Plastic	jewelry	boxes	are	perfect	for	organizing	very	small	items.

Consider	buying	a	ledger-sized	cutting	mat	to	use	as	a	defined	and	nonconductive	workspace
(one	that	doesn’t	pass	electricity),	so	you	won’t	run	the	risk	of	short-circuiting	your	sensitive
electronics.

EQUIPMENT	AND	TOOL	GUIDE
While	they’re	not	necessarily	required	for	the	projects	in	this	book,	here	are	some	of	the	more
useful	pieces	of	equipment	that	you	may	consider	buying	when	setting	up	a	workspace.

•	Helping	hands—useful	for	holding	items

•	Ledger-sized,	nonconductive	cutting	mat

•	Needle-nose	pliers

•	Wire	cutters

•	30-watt	soldering	iron	and	solder	(see	the	“Quick	Soldering	Guide”	on	page	18)

•	Solder	sucker	to	suck	up	solder!

•	Wire	stripper—especially	useful	for	making	jumper	wires

•	USB	A-to-B	cable	for	use	with	your	Arduino

•	Digital	multimeter

•	Screwdriver

•	Rotary	tool	and	attachments

•	Glue	gun

QUICK	SOLDERING	GUIDE
A	few	of	the	components	you’ll	need	may	come	without	their	header	pins	(Figure	0-12)	attached
for	ease	of	transport,	and	you’ll	need	to	solder	them	in	place.	Header	pins	are	rows	of	pins	you
attach	to	a	component	so	you	can	make	connections	with	jumper	wires	or	insert	into	a
breadboard.	They	come	in	strips	that	can	be	easily	snapped	to	the	size	needed,	and	they	are
usually	inserted	into	holes	on	the	component	designed	for	them.

FIGURE	0-12:
Header	pins

The	RFID	module	used	in	Project	23,	for	example,	doesn’t	come	with	the	pins	attached,	so	I’ll
demonstrate	how	to	solder	those	in	place	now	as	a	quick	guide	to	soldering.	If	you	want	something
more	in-depth,	there’s	a	handy	cartoon	soldering	guide	at
https://mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf.

First	you	will	need	a	soldering	iron	(Figure	0-13).	A	general-purpose,	30-watt	soldering	iron
with	a	fine	tip	should	meet	your	needs.	It’s	worthwhile	to	buy	a	kit	that	includes	a	soldering	iron,
stand,	and	solder.

https://mightyohm.com/files/soldercomic/FullSolderComic_EN.pdf

FIGURE	0-13:
Soldering	iron	and	solder	wire

To	solder,	you	heat	the	area	you	want	to	solder	with	the	soldering	iron—for	example,	the
place	where	the	pin	and	the	component	meet—and	then	apply	the	soldering	wire	to	the	heated
area;	the	wire	quickly	melts,	and	when	it	resets,	it	should	create	a	clean	connection	between	the
two	items	you	soldered.	Here’s	a	demonstration.

1.	 Plug	in	your	soldering	iron	and	wait	at	least	five	minutes	for	it	to	reach	operating
temperature.

2.	 Break	off	the	right	number	of	header	pins	for	your	component.	For	the	RFID	module	in
Project	23,	we	need	a	row	of	eight	pins.	Insert	them	into	the	module	as	shown	in	Figure	0-14.

2.	 FIGURE	0-14:
Insert	the	header	pins	into	the	module.

NOTE
You	do	not	apply	solder	directly	to	the	iron,	only	to	the	joint	you	are	soldering.

3.	 Now	we	will	solder	the	pins	in	place.	Start	with	the	leftmost	pin.	Hold	the	heated	tip	of	the
soldering	iron	to	the	pin	and	module	at	the	same	time.	You	only	need	to	hold	it	there	for
about	two	seconds.	While	holding	the	iron	in	place,	add	solder	to	the	area;	the	solder	should
melt	and	create	a	joint.

4.	 Quickly	remove	both	the	iron	and	solder—more	than	a	couple	of	seconds	could	damage	your
components.	Wait	for	the	joint	to	cool.

A	good	solder	joint	should	be	like	a	shiny	cone	(Figure	0-15).	With	a	little	bit	of	practice,	you
will	be	able	to	solder	in	no	time	at	all.

FIGURE	0-15:
Solder	joints	should	look	like	this.

Safety	First
Soldering	irons	get	very,	very	hot	and	should	be	used	with	extreme	care	and	not	used	by
unsupervised	children.	Here	are	a	few	safety	tips:

•	Be	sure	to	use	a	stand	and	never	lay	a	hot	soldering	iron	down	on	a	table.

•	Solder	in	a	well-ventilated	room.	The	fumes	released	from	melting	solder	can	be	harmful.

•	Keep	flammable	materials	away	from	your	work	area.

•	Keep	equipment	out	of	reach	of	children.

•	Wear	eye	protection.

•	Wait	for	a	soldering	iron	to	cool	down	completely	before	storing	it.

PART	1
LEDS

PROJECT	1:	PUSHBUTTON-CONTROLLED	LED
IN	THIS	PROJECT,	YOU’LL	ADD	A	PUSHBUTTON	SWITCH	TO	AN	LED
CIRCUIT	TO	CONTROL	WHEN	THE	LED	IS	LIT.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	LED

•	Momentary	tactile	four-pin	pushbutton

•	10k-ohm	resistor

•	220-ohm	resistor

This	project	will	take	you	through	the	basics	of	switches,	which	you’ll	be	using	a	lot
throughout	this	book.	Almost	all	electrical	items	use	switches	to	turn	an	element	on	or	off.	There
are	many	types	of	switches,	and	the	one	you’ll	use	now	is	a	pushbutton	(Figure	1-1).

FIGURE	1-1:
A	pushbutton

HOW	IT	WORKS
When	pressed,	a	pushbutton	completes	a	circuit,	turning	it	on.	As	soon	as	the	button	is	released,
the	connection	will	spring	back	and	break	that	circuit,	turning	it	off.	The	pushbutton	switch	is
also	known	as	a	momentary	or	normally	open	switch,	and	is	used	in,	for	example,	computer
keyboards.	This	is	in	contrast	to	a	toggle	switch,	which	stays	either	on	or	off	until	you	toggle	it	to
the	other	position,	like	a	light	switch.

This	type	of	pushbutton	has	four	pins,	but	you	generally	use	only	two	at	a	time	for
connection.	You’ll	use	the	top	connections	in	this	project,	although	the	two	unused	pins	at	the
bottom	would	do	the	same	job.	As	Figure	1-2	shows,	the	pins	work	in	a	circuit.	Pins	A	and	C	are
always	connected,	as	are	pins	B	and	D.	When	the	button	is	pressed,	the	circuit	is	complete.

FIGURE	1-2:
A	pushbutton’s	incomplete	circuit

THE	BUILD

1.	 Place	your	pushbutton	in	a	breadboard,	as	shown	in	Figure	1-3.

1.	 FIGURE	1-3:
Placing	your	pushbutton

2.	 Connect	pin	A	to	one	leg	of	a	10k-ohm	resistor,	and	connect	that	same	resistor	leg	to	Arduino
pin	2.	Connect	the	other	resistor	leg	to	the	GND	rail,	and	connect	the	GND	rail	to	the
Arduino’s	GND.	Connect	pin	B	on	the	switch	to	the	+5V	rail,	and	connect	this	rail	to	+5V	on
the	Arduino.

PUSHBUTTON ARDUINO

Pin	A GND	and	pin	2	via	10k-ohm	resistor

Pin	B +5V

3.	 Add	the	LED	to	your	breadboard,	connecting	the	longer,	positive	leg	to	Arduino	pin	13	via	a
220-ohm	resistor	and	the	shorter	leg	to	GND.

LED ARDUINO

Positive	leg Pin	13	via	220-ohm	resistor

Negative	leg GND

4.	 Confirm	that	your	setup	matches	the	circuit	diagram	shown	in	Figure	1-4,	and	then	upload
the	code	in	“The	Sketch”	on	page	27.

4.	 FIGURE	1-4:
Circuit	diagram	for	the	pushbutton-controlled	LED

THE	SKETCH
In	this	sketch,	you	assign	a	pin	for	the	pushbutton	and	set	it	as	INPUT,	and	a	pin	for	the	LED	and
set	it	as	OUTPUT.	The	code	tells	the	Arduino	to	turn	the	LED	on	as	long	as	the	button	is	being
pressed	(completing	the	circuit),	and	to	keep	the	LED	off	when	the	button	is	not	being	pressed.
When	the	button	is	released,	the	circuit	breaks	and	the	LED	will	turn	off	again.

/*	by	DojoDave	<http://www.0j0.org>
			modified	30	Aug	2011	by	Tom	Igoe
			This	example	code	is	in	the	public	domain.
			http://www.arduino.cc/en/Tutorial/Button
*/

const	int	buttonPin	=	2;						//	Pin	connected	to	pushbutton
const	int	ledPin	=	13;								//	Pin	connected	to	LED
int	buttonState	=	0;										//	Give	pushbutton	a	value

void	setup()	{
		pinMode(ledPin,	OUTPUT);				//	Set	LED	pin	as	output
		pinMode(buttonPin,	INPUT);		//	Set	pushbutton	pin	as	input

}

void	loop()	{
		buttonState	=	digitalRead(buttonPin);	//	Read	input	from	pin	2
		if	(buttonState	==	HIGH)	{	//	If	pushbutton	is	pressed,	set	as	HIGH
				digitalWrite(ledPin,	HIGH);	//	Turn	on	LED
		}
		else	{
				digitalWrite(ledPin,	LOW);		//	Otherwise,	turn	off	LED
		}
}

PROJECT	2:	LIGHT	DIMMER
IN	THIS	PROJECT,	YOU’LL	CREATE	A	DIMMER	SWITCH	BY	ADDING	A
POTENTIOMETER	TO	CONTROL	THE	BRIGHTNESS	OF	AN	LED.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	LED

•	50k-ohm	potentiometer

•	470-ohm	resistor

A	potentiometer	is	a	variable	resistor	with	a	knob	that	allows	you	to	alter	the	resistance	of	the
potentiometer	as	you	turn	it.	It	is	commonly	used	in	electrical	devices	such	as	volume	controls	on
audio	equipment.	This	project	uses	a	50k-ohm	potentiometer.

HOW	IT	WORKS

The	potentiometer	manipulates	a	continuous	analog	signal,	which	represents	physical
measurements.	Humans	perceive	the	world	in	analog;	everything	we	see	and	hear	is	a	continuous
transmission	of	information	to	our	senses.	This	continuous	stream	is	what	defines	analog	data.
Digital	information,	on	the	other	hand,	estimates	analog	data	using	only	numbers.	To
approximate	the	continuous	analog	data	from	the	potentiometer,	the	Arduino	must	represent	the
signal	as	a	series	of	discrete	numbers—in	this	case,	voltages.	The	center	pin	of	the	potentiometer
sends	the	signal	to	an	Arduino	analog	IN—any	pin	from	A0	to	A5—to	read	the	value.

The	LED	is	actually	being	switched	on	and	off,	but	it	happens	so	quickly	that	our	eyes
compensate	and	we	see	a	continuously	lit	LED	at	varying	light	levels.	This	is	known	as	persistence	of
vision.

To	create	persistence	of	vision,	the	Arduino	uses	a	technique	called	pulse	width	modulation
(PWM).	The	Arduino	creates	a	pulse	by	switching	the	power	on	and	off	very	quickly.	The
duration	that	the	power	is	on	or	off	(known	as	the	pulse	width)	in	the	cycle	determines	the	average
output,	and	by	varying	this	pulse	width	the	pattern	can	simulate	voltages	between	full	on	(5	volts)
and	off	(0	volts).	If	the	signal	from	the	Arduino	is	on	for	half	the	time	and	off	for	half,	the	average
output	will	be	2.5	volts,	halfway	between	0	and	5.	If	the	signal	is	on	for	80	percent	and	off	for	20
percent,	then	the	average	voltage	is	4	volts,	and	so	on.	You	can	vary	the	signal,	which	in	turn	varies
the	pulse	width,	by	turning	the	potentiometer	left	or	right,	increasing	or	decreasing	the	resistance.

Using	this	technique,	you	can	change	the	voltage	sent	to	the	LED	and	make	it	dimmer	or
brighter	to	match	the	analog	signal	from	the	potentiometer.	Only	pins	3,	5,	6,	9,	10,	or	11	on	the
Arduino	can	use	PWM.	Figure	2-1	gives	examples	of	how	PWM	would	look	as	a	waveform.

FIGURE	2-1:
Pulse	width	modulation	as	a	waveform

THE	BUILD

1.	 Insert	the	potentiometer	into	your	breadboard	and	connect	the	center	pin	to	the	Arduino’s
A0	pin.	Connect	one	of	the	outer	pins	to	the	+5V	rail	of	the	breadboard	and	the	other	outer
pin	to	GND	on	the	breadboard	(it	doesn’t	actually	matter	which	way	around	the	outer
potentiometer	pins	are	connected;	these	instructions	just	reflect	the	diagrams	in	this	project),
as	shown	in	Figure	2-2.

1.	 FIGURE	2-2:
Connecting	the	potentiometer	to	the	Arduino

POTENTIOMETER ARDUINO

Left	pin +5V

Center	pin A0

Right	pin GND

2.	 Insert	the	LED	into	the	breadboard.	Attach	the	positive	leg	(the	longer	leg)	to	pin	9	of	the
Arduino	via	the	470-ohm	resistor,	and	the	negative	leg	to	GND,	as	shown	in	Figure	2-3.

LED ARDUINO

Positive	leg Pin	9

Negative	leg GND	via	470-ohm	resistor

2.	 FIGURE	2-3:
Circuit	diagram	for	the	light	dimmer

3.	 Upload	the	code	in	“The	Sketch”	below.

4.	 Turn	the	potentiometer	to	control	the	brightness	of	the	LED.

This	project	has	many	potential	uses:	you	can	cluster	a	number	of	LEDs	together	to	create	an
adjustable	flashlight,	a	night-light,	a	display	case	light,	or	anything	else	that	uses	dimming	lights.

THE	SKETCH
This	sketch	works	by	setting	pin	A0	as	your	potentiometer	and	pin	9	as	an	OUTPUT	to	power	the
LED.	You	then	run	a	loop	that	continually	reads	the	value	from	the	potentiometer	and	sends	that
value	as	voltage	to	the	LED.	The	voltage	value	is	between	0–5	volts,	and	the	brightness	of	the
LED	will	vary	accordingly.

/*	http://arduino.cc/en/Reference/AnalogWrite	by	Tom	Igoe
			from	http:itp.nyu.edu/physcomp/Labs/AnalogIn	*/

int	potPin	=	A0;	//	Analog	input	pin	connected	to	the	potentiometer

int	potValue	=	0;	//	Value	that	will	be	read	from	the	potentiometer
int	led	=	9;	//	Pin	9	(connected	to	the	LED)	is	capable	of	PWM

//	Runs	once	at	beginning	of	the	program
void	setup()	{
		pinMode(led,	OUTPUT);	//	Set	pin	9	to	output
}

//	Loops	continuously
void	loop()	{
		potValue	=	analogRead(potPin);	//	Read	potentiometer	value
																																	//	from	A0	pin
		analogWrite(led,	potValue/4);		//	Send	potentiometer	value	to	LED
																																	//	to	control	brightness	with	PWM
		delay(10);																					//	Wait	for	10	ms
}

PROJECT	3:	BAR	GRAPH
IN	THIS	PROJECT,	YOU’LL	COMBINE	WHAT	YOU’VE	LEARNED	IN	THE
PREVIOUS	LED	PROJECTS	TO	CREATE	AN	LED	BAR	GRAPH	THAT	YOU
CAN	CONTROL	WITH	A	POTENTIOMETER.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	9	LEDs

•	50k-ohm	potentiometer

•	9	220-ohm	resistors

HOW	IT	WORKS
A	bar	graph	is	a	series	of	LEDs	in	a	line,	similar	to	what	you	might	see	on	an	audio	display.	It’s
made	up	of	a	row	of	LEDs	with	an	analog	input,	like	a	potentiometer	or	microphone.	In	this
project,	you	use	the	analog	signal	from	the	potentiometer	to	control	which	LEDs	are	lit.	When
you	turn	the	potentiometer	one	way,	the	LEDs	light	up	one	at	a	time	in	sequence,	as	shown	in

Figure	3-1(a),	until	they	are	all	on,	shown	in	Figure	3-1(b).	When	you	turn	it	the	other	way,	they
turn	off	in	sequence,	as	shown	in	Figure	3-1(c).

FIGURE	3-1:
The	LEDs	light	up	and	turn	off	in	sequence	as	you	turn	the	potentiometer.

THE	BUILD

1.	 Insert	the	LEDs	into	the	breadboard	with	their	shorter,	negative	legs	in	the	GND	rail.
Connect	this	rail	to	Arduino	GND	using	a	jumper	wire.

2.	 Insert	a	220-ohm	resistor	for	each	LED	into	the	breadboard,	with	one	resistor	leg	connected
to	the	positive	LED	leg.	Connect	the	other	legs	of	the	resistors	to	digital	pins	2–10	in
sequence,	as	shown	in	Figure	3-2.	It’s	important	that	the	resistors	bridge	the	break	in	the
breadboard	as	shown.

LEDS ARDUINO

Positive	legs Pins	2–10	via	220-ohm	resistor

Negative	legs GND

2.	 FIGURE	3-2:
Circuit	diagram	for	the	bar	graph

NOTE
As	mentioned	in	Project	2,	it	doesn’t	actually	matter	which	way	the	outer	potentiometer	pins	are
connected,	but	I’ve	given	instructions	here	to	reflect	the	images.

3.	 Place	the	potentiometer	in	the	breadboard	and	connect	the	center	pin	to	Arduino	A0.
Connect	the	right	outer	pin	to	+5V	and	the	left	potentiometer	pin	to	GND.

POTENTIOMETER ARDUINO

Left	pin GND

Center	pin A0

Right	pin +5V

4.	 Upload	the	code	in	“The	Sketch”	below.

THE	SKETCH
The	sketch	first	reads	the	input	from	the	potentiometer.	It	maps	the	input	value	to	the	output
range,	in	this	case	nine	LEDs.	Then	it	sets	up	a	for	loop	over	the	outputs.	If	the	output	number	of
the	LED	in	the	series	is	lower	than	the	mapped	input	range,	the	LED	turns	on;	if	not,	it	turns	off.
See?	Simple!	If	you	turn	the	potentiometer	to	the	right,	the	LEDs	light	up	in	sequence.	Turn	it	to
the	left,	and	they	turn	off	in	sequence.

/*	By	Tom	Igoe.	This	example	code	is	in	the	public	domain.
			http://www.arduino.cc/en/Tutorial/BarGraph	*/

const	int	analogPin	=	A0;	//	Pin	connected	to	the	potentiometer
const	int	ledCount	=	9;			//	Number	of	LEDs
int	ledPins[]	=	{2,3,4,5,6,7,8,9,10};	//	Pins	connected	to	the	LEDs

void	setup()	{
		for	(int	thisLed	=	0;	thisLed	<	ledCount;	thisLed++)	{
				pinMode(ledPins[thisLed],	OUTPUT);	//	Set	the	LED	pins	as	output
		}
}

//	Start	a	loop
void	loop()	{
		int	sensorReading	=	analogRead(analogPin);	//	Analog	input
		int	ledLevel	=	map(sensorReading,	0,	1023,	0,	ledCount);
		for	(int	thisLed	=	0;	thisLed	<	ledCount;	thisLed++)	{
				if	(thisLed	<	ledLevel)	{	//	Turn	on	LEDs	in	sequence
						digitalWrite(ledPins[thisLed],	HIGH);
				}
				else	{	//	Turn	off	LEDs	in	sequence
						digitalWrite(ledPins[thisLed],	LOW);
				}
		}
}

PROJECT	4:	DISCO	STROBE	LIGHT
IN	THIS	PROJECT,	YOU’LL	APPLY	THE	SKILLS	YOU	LEARNED	IN	PROJECT
3	TO	MAKE	A	STROBE	LIGHT	WITH	ADJUSTABLE	SPEED	SETTINGS.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	2	blue	LEDs

•	2	red	LEDs

•	50k-ohm	potentiometer

•	4	220-ohm	resistors

HOW	IT	WORKS
Turning	the	potentiometer	up	or	down	changes	the	speed	of	the	flashing	lights,	creating	a	strobe
effect.	You	can	use	red	and	blue	LEDs	for	a	flashing	police	light	effect	(see	Figure	4-1).	Connect
the	LEDs	of	the	same	color	to	the	same	Arduino	pin	so	they’ll	always	light	together.	If	you	build	a

casing	to	house	your	LEDs,	you’ll	have	your	own	mobile	strobe	unit.	You	can	add	up	to	10	LEDs;
just	update	the	sketch	to	include	your	output	pins	and	the	new	number	of	LEDs.

FIGURE	4-1:
Red	and	blue	LEDs	mimic	the	lights	of	a	police	car.

THE	BUILD

1.	 Place	your	LEDs	into	the	breadboard	with	the	short,	negative	legs	in	the	GND	rail,	and	then
connect	this	rail	to	Arduino	GND.

NOTE
Remember	to	add	power	to	the	breadboard.

2.	 Insert	the	resistors	into	the	board,	connecting	them	to	the	longer,	positive	legs	of	the	LEDs.
Use	jumper	wires	to	connect	the	two	red	LEDs	together	and	the	two	blue	LEDs	together	via
the	resistors,	as	shown	in	Figure	4-2;	this	allows	the	LEDs	of	the	same	color	to	be	controlled
by	a	single	pin.

2.	 FIGURE	4-2:
Connecting	LEDs	with	jumper	wires

3.	 Connect	the	red	LEDs	to	Arduino	pin	12	and	the	blue	LEDs	to	Arduino	pin	11.

LEDS ARDUINO

Negative	legs GND

Positive	leg	(red) Pin	12

Positive	leg	(blue) Pin	11

4.	 Place	the	potentiometer	in	the	breadboard	and	connect	the	center	pin	to	Arduino	A0,	the	left
pin	to	GND,	and	the	right	pin	to	+5V.

POTENTIOMETER ARDUINO

Left	pin GND

Center	pin A0

Right	pin +5V

5.	 Confirm	that	your	setup	matches	that	of	Figure	4-3,	and	then	upload	the	code	in	“The
Sketch”	on	page	43.

5.	 FIGURE	4-3:
Circuit	diagram	for	the	disco	strobe	light

THE	SKETCH
The	sketch	works	by	setting	the	analog	signal	from	the	potentiometer	to	the	Arduino	as	an	input
and	the	pins	connected	to	the	LEDs	as	outputs.	The	Arduino	reads	the	analog	input	from	the
potentiometer	and	uses	this	value	as	the	delay	value—the	amount	of	time	that	passes	before	the
LEDs	change	state	(either	on	or	off).	This	means	that	the	LEDs	are	on	and	off	for	the	duration	of
the	potentiometer	value,	so	changing	this	value	alters	the	speed	of	the	flashing.	The	sketch	cycles
through	the	LEDs	to	produce	a	strobe	effect.

const	int	analogInPin	=	A0;	//	Analog	input	pin	connected	to	the
																												//	potentiometer
int	sensorValue	=	0;								//	Value	read	from	the	potentiometer
int	timer	=	0;														//	Delay	value

//	Set	digital	pins	12	and	11	as	outputs
void	setup()	{
		pinMode(12,	OUTPUT);
		pinMode(11,	OUTPUT);
}

//	Start	a	loop	to	turn	LEDs	on	and	off	with	a	delay	in	between
void	loop()	{
		sensorValue	=	analogRead(analogInPin);	//	Read	value	from	the
																																									//	potentiometer
		timer	=	map(sensorValue,	0,	1023,	10,	500);	//	Delay	10	to	500	ms
		digitalWrite(12,	HIGH);	//	LED	turns	on
		delay(timer);											//	Delay	depending	on	potentiometer	value
		digitalWrite(12,	LOW);		//	LED	turns	off
		delay(timer);
		digitalWrite(12,	HIGH);
		delay(timer);
		digitalWrite(12,	LOW);
		digitalWrite(11,	HIGH);
		delay(timer);
		digitalWrite(11,	LOW);
		delay(timer);
		digitalWrite(11,	HIGH);
		delay(timer);
		digitalWrite(11,	LOW);
}

PROJECT	5:	PLANT	MONITOR
IN	THIS	PROJECT	I’LL	INTRODUCE	A	NEW	TYPE	OF	ANALOG	SENSOR
THAT	DETECTS	MOISTURE	LEVELS.	YOU’LL	SET	UP	A	LIGHT	AND	SOUND
ALARM	SYSTEM	TO	TELL	YOU	WHEN	YOUR	PLANT	NEEDS	WATERING.

PARTS	REQUIRED

•	Arduino	board

•	Jumper	wires

•	LED

•	HL-69	hygrometer	soil	moisture	sensor

•	Piezo	buzzer

HOW	IT	WORKS
You’ll	use	an	HL-69	moisture	sensor,	readily	available	online	for	a	few	dollars	or	from	some	of	the
retailers	listed	in	Appendix	A.	The	prongs	of	the	sensor	detect	the	moisture	level	in	the
surrounding	soil	by	passing	current	through	the	soil	and	measuring	the	resistance.	Damp	soil
conducts	electricity	easily,	so	it	provides	lower	resistance,	while	dry	soil	conducts	poorly	and	has	a
higher	resistance.

The	sensor	consists	of	two	parts,	as	shown	in	Figure	5-1:	the	actual	prong	sensor	(a)	and	the
controller	(b).	The	two	pins	on	the	sensor	need	to	connect	to	the	two	separate	pins	on	the
controller	(connecting	wires	are	usually	supplied).	The	other	side	of	the	controller	has	four	pins,
three	of	which	connect	to	the	Arduino.

FIGURE	5-1:
The	HL-69	moisture	sensor	prong	(a)	and	controller	(b)

The	four	pins	are,	from	left	to	right,	AO	(analog	out),	DO	(digital	out),	GND,	and	VCC	(see
Figure	5-2).	You	can	read	the	values	from	the	controller	through	the	IDE	when	it’s	connected	to
your	computer.	This	project	doesn’t	use	a	breadboard,	so	the	connections	are	all	made	directly	to
the	Arduino.

FIGURE	5-2:
The	pins	are	labeled	on	the	underside	of	the	module

Lower	readings	indicate	that	more	moisture	is	being	detected,	and	higher	readings	indicate
dryness.	If	your	reading	is	above	900,	your	plant	is	seriously	thirsty.	If	your	plant	gets	too	thirsty,
the	LED	will	light	and	the	piezo	buzzer	will	sound.	Piezos	are	inexpensive	buzzers	and	are
explained	more	in	Project	7.

THE	BUILD

1.	 Connect	the	sensor’s	two	pins	to	the	+	and	–	pins	on	the	controller	using	the	provided
connecting	wires,	as	shown	in	Figure	5-3.

1.	 FIGURE	5-3:
Connecting	the	sensor	to	the	controller

2.	 Connect	the	three	prongs	from	the	controller	to	+5V,	GND,	and	Arduino	A0	directly	on	the
Arduino,	as	shown	in	the	following	table.	The	DO	pin	is	not	used.

SENSOR	CONTROLLER ARDUINO

VCC +5V

GND GND

A0 A0

DO Not	used

3.	 Connect	an	LED	directly	to	the	Arduino	with	the	shorter,	negative	leg	in	GND	and	the
longer,	positive	leg	in	Arduino	pin	13,	as	shown	in	Figure	5-4.

3.	 FIGURE	5-4:
Connecting	the	LED	to	the	Arduino

LED ARDUINO

Positive	leg Pin	13

Negative	leg GND

4.	 Connect	the	piezo	buzzer’s	black	wire	to	GND	and	its	red	wire	to	Arduino	pin	11.

PIEZO ARDUINO

Red	wire Pin	11

Black	wire GND

5.	 Check	that	your	setup	matches	that	of	Figure	5-5,	and	then	upload	the	code	in	“The	Sketch”
on	page	51.

5.	 FIGURE	5-5:
Circuit	diagram	for	the	plant	monitor

6.	 Connect	the	Arduino	to	your	computer	using	the	USB	cable.	Open	the	Serial	Monitor	in
your	IDE	to	see	the	values	from	the	sensor—this	will	also	help	you	to	calibrate	your	plant
monitor.	The	IDE	will	display	the	value	of	the	sensor’s	reading.	My	value	was	1000	with	the
sensor	dry	and	not	inserted	in	the	soil,	so	I	know	this	is	the	highest,	and	driest,	value.	To
calibrate	this	value,	turn	the	potentiometer	on	the	controller	clockwise	to	increase	the
resistance	and	counterclockwise	to	decrease	it	(see	Figure	5-5).

When	the	sensor	is	inserted	into	moist	soil,	the	value	will	drop	to	about	400.	As	the	soil
dries	out,	the	sensor	value	rises;	when	it	reaches	900,	the	LED	will	light	and	the	buzzer	will
sound.

6.	 FIGURE	5-6:
Turn	the	potentiometer	to	calibrate	your	plant	monitor.

THE	SKETCH
The	sketch	first	defines	Arduino	pin	A0	so	that	it	reads	the	moisture	sensor	value.	It	then	defines
Arduino	pin	11	as	output	for	the	buzzer,	and	pin	13	as	output	for	the	LED.	Use	the
Serial.Println()	function	to	send	the	reading	from	the	sensor	to	the	IDE,	in	order	to	see	the	value
on	the	screen.

Change	the	value	in	the	line

if(analogRead(0)	>	900){

depending	on	the	reading	from	the	sensor	when	it	is	dry	(here	it’s	900).	When	the	soil	is	moist,	this
value	will	be	below	900,	so	the	LED	and	buzzer	will	remain	off.	When	the	value	rises	above	900,	it
means	the	soil	is	drying	out,	and	the	buzzer	and	LED	will	alert	you	to	water	your	plant.

const	int	moistureAO	=	0;
int	AO	=	0;							//	Pin	connected	to	A0	on	the	controller
int	tmp	=	0;						//	Value	of	the	analog	pin
int	buzzPin	=	11;	//	Pin	connected	to	the	piezo	buzzer
int	LED	=	13;					//	Pin	connected	to	the	LED

void	setup	()	{
		Serial.begin(9600);	//	Send	Arduino	reading	to	IDE
		Serial.println("Soil	moisture	sensor");
		pinMode(moistureAO,	INPUT);
		pinMode(buzzPin,	OUTPUT);	//	Set	pin	as	output
		pinMode(LED,	OUTPUT);					//	Set	pin	as	output
}

void	loop	()	{
		tmp	=	analogRead(moistureAO);
		if	(tmp	!=	AO)	{
				AO	=	tmp;
				Serial.print("A	=	");	//	Show	the	resistance	value	of	the	sensor
																										//	in	the	IDE
				Serial.println(AO);
		}
		delay	(1000);
		if	(analogRead(0)	>	900)	{	//	If	the	reading	is	higher	than	900,

				digitalWrite(buzzPin,	HIGH);	//	the	buzzer	will	sound
				digitalWrite(LED,	HIGH);					//	and	the	LED	will	light
				delay(1000);	//	Wait	for	1	second
				digitalWrite(buzzPin,	LOW);
				digitalWrite(LED,	HIGH);
		}
		else	{
				digitalWrite(buzzPin,	LOW);	//	If	the	reading	is	below	900,
																																//	the	buzzer	and	LED	stay	off
				digitalWrite(LED,	LOW);
		}
}

PROJECT	6:	GHOST	DETECTOR
WHO	WOULDN’T	WANT	TO	MAKE	A	GHOST	DETECTOR?	THIS	IS	A
REALLY	SIMPLE	PROJECT	THAT	DOESN’T	TAKE	LONG	TO	PUT	TOGETHER,
SO	YOU	CAN	START	DETECTING	GHOSTS	RIGHT	AWAY.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	3	red	LEDs

•	1	yellow	LED

•	6	green	LEDs

•	10	220-ohm	resistors

•	20-centimeter	length	of	single-core	wire

•	1M-ohm	resistor

HOW	IT	WORKS

Okay,	so	I	might	be	stretching	things	a	bit	by	calling	this	project	a	ghost	detector.	This	project
actually	detects	electromagnetic	fields,	but	many	people	believe	this	is	how	to	tell	if	there	are	ghosts
or	spirits	around.

In	this	project,	you’ll	set	up	a	ghost-detecting	antenna	and	LED	bar	graph	system	to	tell
whether	there	is	a	high	level	of	electromagnetic	activity	in	the	vicinity.	A	length	of	bare	wire	acts
as	an	antenna	to	pick	up	an	electromagnetic	field	within	a	radius	of	two	meters.	Depending	on	the
strength	of	the	signal,	the	LEDs	will	light	in	sequence:	the	stronger	the	signal,	the	more	LEDs
will	light.	Power	up	the	Arduino,	and	point	your	detector	into	a	room	to	pick	up	any	unusual
presences.	Be	aware	that	electrical	appliances	such	as	televisions	will	cause	the	detector	to	dance
around	because	of	the	signal	they	emit.

THE	BUILD

1.	 Place	the	LEDs	into	the	breadboard	with	the	legs	on	either	side	of	the	center	divide	(see
“Breadboards”	on	page	4	for	more	on	the	layout	of	the	breadboard),	as	shown	in	Figure	6-1.	I
started	with	a	yellow	LED,	then	used	six	green	and	three	red	LEDs	to	create	a	scale	from	left
to	right.	You	can	use	any	color	LEDs	and	position	them	in	the	sequence	you	prefer.

1.	 FIGURE	6-1:
Placing	the	LEDs

ELECTROMAGNETIC	FIELDS
Electric	fields	are	created	by	differences	in	voltage:	the	higher	the	voltage,	the	stronger	the
resultant	field.	Magnetic	fields	are	created	when	electric	current	flows:	the	greater	the
current,	the	stronger	the	magnetic	field.	An	electromagnetic	field	(EMF)	can	be	thought	of	as
a	combination	of	the	two.

Electromagnetic	fields	are	present	everywhere	in	the	environment	but	are	invisible	to
the	human	eye.	Electric	fields	are	produced	by	the	local	buildup	of	electric	charges	in	the

atmosphere	and	associated	with	thunderstorms.	The	earth	constantly	emits	a	magnetic
field.	It	is	used	by	birds	and	fish	for	navigation	and	causes	a	compass	needle	to	orient	to	the
north.

2.	 Connect	one	leg	of	a	220-ohm	resistor	to	each	negative	LED	leg,	and	insert	the	other	resistor
leg	in	the	GND	rail	of	the	breadboard	(see	Figure	6-2).	Connect	each	positive	LED	leg	to
digital	pins	2	through	11	in	turn.

LEDS ARDUINO

Positive	legs Pins	2–11

Negative	legs GND	via	220-ohm	resistors

2.	 FIGURE	6-2:
Connecting	the	LEDs	to	the	breadboard

3.	 Take	the	20-centimeter	length	of	single-core	wire	and	use	a	wire	stripper	to	strip	about	1
centimeter	of	the	insulation	from	one	end.	Attach	this	end	to	Arduino	pin	A5.	Strip	about	7
centimeters	from	the	other	end—this	open,	bare	wire	end	is	your	antenna	and	will	pick	up	the
electromagnetic	signal	(see	Figure	6-3).

3.	 FIGURE	6-3:
Stripping	wire	to	create	an	antenna

4.	 Connect	one	leg	of	the	1M-ohm	resistor	directly	to	GND	on	the	Arduino	and	the	other	leg
to	Arduino	pin	A5;	this	will	increase	the	sensitivity	of	your	device.

5.	 Check	that	your	setup	matches	that	of	Figure	6-4,	and	then	upload	the	code	in	“The	Sketch”
on	page	59.

5.	 FIGURE	6-4:
Circuit	diagram	for	the	ghost	detector

THE	SKETCH
The	bare	wire	picks	up	the	signal	from	electromagnetic	fields	in	the	atmosphere	and	sends	a	value
between	0	and	1023	to	the	Arduino.	The	sketch	evaluates	the	reading	from	the	analog	pin	to
determine	how	many	LEDs	are	switched	on	or	off	in	sequence	to	indicate	the	strength	of	the
electromagnetic	signal.	For	example,	1023	would	be	the	highest	value,	so	all	LEDs	would	be	lit;	a
reading	of	550	would	light	five	LEDs.	The	sketch	loops	to	continuously	read	the	analog	input,
and	the	LED	lights	constantly	move	to	show	the	reading.	If	you	find	that	the	EMF	readings	set	off
your	LED	sequence	to	the	maximum	level	every	time,	reduce	the	senseLimit	value	to	compensate.
The	sketch	takes	an	average	of	25	number	readings	each	time	it	loops	through,	and	uses	the
average	from	those	readings	to	mitigate	big	fluctuations	that	may	cause	the	LEDs	to	light	up	too
quickly.

NOTE
Once	you’ve	completed	the	ghost	detector,	try	adding	some	sounds	that	beep	at	increasing	speeds	or	volumes
depending	on	the	reading.	Build	a	casing	for	the	project	to	have	your	own	handheld	sensor	to	take	on	ghost-

hunting	endeavors.	You	can	also	experiment	by	trying	various	types	and	thicknesses	of	wire,	and	by	taking
away	the	resistor	for	different	levels	of	sensitivity.

//	Code	by	James	Newbould	used	with	kind	permission
#define	NUMREADINGS	25	//	Raise	number	to	increase	data	smoothing
int	senseLimit	=	1023;	//	Raise	number	to	decrease	sensitivity	of
																							//	the	antenna	(up	to	1023	max)
int	probePin	=	5;	//	Set	analog	pin	5	as	the	antenna	pin
int	val	=	0;						//	Reading	from	probePin

//	Pin	connections	to	LED	bar	graph	with	resistors	in	series
int	LED1	=	11;
int	LED2	=	10;
int	LED3	=	9;
int	LED4	=	8;
int	LED5	=	7;
int	LED6	=	6;
int	LED7	=	5;
int	LED8	=	4;
int	LED9	=	3;
int	LED10	=	2;
int	readings[NUMREADINGS];	//	Readings	from	the	analog	input
int	index	=	0;													//	Index	of	the	current	reading
int	total	=	0;													//	Running	total
int	average	=	0;											//	Final	average	of	the	probe	reading

void	setup()	{
		pinMode(2,	OUTPUT);	//	Set	LED	bar	graph	pins	as	outputs
		pinMode(3,	OUTPUT);
		pinMode(4,	OUTPUT);
		pinMode(5,	OUTPUT);
		pinMode(6,	OUTPUT);
		pinMode(7,	OUTPUT);
		pinMode(8,	OUTPUT);
		pinMode(9,	OUTPUT);
		pinMode(10,	OUTPUT);
		pinMode(11,	OUTPUT);

		Serial.pinMode(9600);	//	Initiate	serial	connection	with	IDE	for
																								//	debugging	and	so	on
		for	(int	i	=	0;	i	<	NUMREADINGS;	i++)
				readings[i]	=	0;	//	Initialize	all	readings	to	0
}

void	loop()	{
		val	=	analogRead(probePin);	//	Take	a	reading	from	probe
		if	(val	>=	1)	{													//	If	the	reading	isn't	zero,	proceed
				val	=	constrain(val,	1,	senseLimit);	//	If	the	reading	is
																																									//	higher	than	the	current
																																									//	senseLimit	value,	update
																																									//	senseLimit	value	with
																																									//	higher	reading
				val	=	map(val,	1,	senseLimit,	1,	1023);	//	Remap	the	constrained
																																												//	value	within	a	1	to
																																												//	1023	range
				total	-=	readings[index];	//	Subtract	the	last	reading
				readings[index]	=	val;				//	Read	from	the	sensor
				total	+=	readings[index];	//	Add	the	reading	to	the	total
				index	=	(index	+	1);						//	Advance	to	the	next	index
				if	(index	>=	NUMREADINGS)	//	If	we're	at	the	end	of	the	array
						index	=	0;														//	loop	around	to	the	beginning
				average	=	total	/	NUMREADINGS;	//	Calculate	the	average	reading

				if	(average	>	50)	{	//	If	the	average	reading	is	higher	than	50
						digitalWrite(LED1,	HIGH);	//	turn	on	the	first	LED
				}
				else	{																								//	If	it's	not
						digitalWrite(LED1,	LOW);				//	turn	off	that	LED
				}
				if	(average	>	150)	{										//	And	so	on
						digitalWrite(LED2,	HIGH);
				}
				else	{
						digitalWrite(LED2,	LOW);
				}
				if	(average	>	250)	{
						digitalWrite(LED3,	HIGH);
				}
				else	{
						digitalWrite(LED3,	LOW);
				}
				if	(average	>	350)	{
						digitalWrite(LED4,	HIGH);
				}
				else	{
						digitalWrite(LED4,	LOW);
				}
				if	(average	>	450)	{
						digitalWrite(LED5,	HIGH);
				}
				else	{
						digitalWrite(LED5,	LOW);
				}
				if	(average	>	550)	{
						digitalWrite(LED6,	HIGH);
				}
				else	{
						digitalWrite(LED6,	LOW);
				}
				if	(average	>	650)	{
						digitalWrite(LED7,	HIGH);
				}
				else	{
						digitalWrite(LED7,	LOW);
				}
				if	(average	>	750)	{
						digitalWrite(LED8,	HIGH);
				}
				else	{
						digitalWrite(LED8,	LOW);
				}
				if	(average	>	850)	{
						digitalWrite(LED9,	HIGH);
				}
				else	{
						digitalWrite(LED9,	LOW);
				}
				if	(average	>	950)	{
						digitalWrite(LED10,	HIGH);
				}
				else	{
						digitalWrite(LED10,	LOW);
				}
				Serial.println(val);			//	Use	output	to	aid	in	calibrating
		}
}

PART	2
SOUND

PROJECT	7:	ARDUINO	MELODY
SO	FAR	ALL	THE	PROJECTS	HAVE	BEEN	VISUAL,	SO	NOW	IT’S	TIME	TO
MAKE	SOME	MUSIC.	IN	THIS	PROJECT	WE	WILL	BE	USING	A
PIEZOELECTRIC	BUZZER	TO	PLAY	SOME	MELODIES.

PARTS	REQUIRED
•	Arduino	board

•	Piezo	buzzer

HOW	IT	WORKS
The	Arduino	melody	uses	a	piezo	buzzer	to	create	frequencies	that	resemble	recognizable	notes.
You	use	the	Arduino	IDE	to	give	the	order,	rate,	and	duration	of	the	notes	to	play	a	specific	tune.

Piezos	are	inexpensive	buzzers	often	used	in	small	toys.	A	piezo	element	without	its	plastic
housing	looks	like	a	gold	metallic	disc	with	connected	positive	(typically	red)	and	negative
(typically	black)	wires.	A	piezo	is	capable	only	of	making	a	clicking	sound,	which	we	create	by
applying	voltage.	We	can	make	recognizable	notes	by	getting	the	piezo	to	click	hundreds	of	times
a	second	at	a	particular	frequency,	so	first	we	need	to	know	the	frequency	of	the	different	tones	we
want.	Table	7-1	shows	the	notes	and	their	corresponding	frequencies.	Period	is	the	duration	of
time,	in	microseconds,	at	which	the	frequency	is	created.	We	halve	this	number	to	get	the	timeHigh
value,	which	is	used	in	the	code	to	create	the	note.

TABLE	7-1:
Notes	and	their	corresponding	frequences

NOTE FREQUENCY PERIOD TIMEHIGH

C 261	Hz 3,830 1915

D 294	Hz 3,400 1700

E 329	Hz 3,038 1519

F 349	Hz 2,864 1432

G 392	Hz 2,550 1275

A 440	Hz 2,272 1136

B 493	Hz 2,028 1014

C 523	Hz 1,912 956

The	code	sends	a	square	wave	of	the	appropriate	frequency	to	the	piezo,	generating	the
corresponding	tone	(see	Project	2	for	more	on	waveform).	The	tones	are	calculated	through	the
following	equation:

timeHigh	=	period	/	2	=	1	/	(2	*	toneFrequency)

The	setup	of	this	project	is	really	simple	and	uses	only	two	wires	connected	to	the	Arduino.

THE	BUILD

1.	 Connect	the	piezo’s	black	wire	directly	to	GND	on	the	Arduino,	and	the	red	wire	to	Arduino
pin	9.

PIEZO ARDUINO

Red	wire Pin	9

Black	wire GND

2.	 Check	that	your	setup	matches	that	of	Figure	7-1,	and	then	upload	the	code	shown	next	in
“The	Sketch”.

2.	 FIGURE	7-1
Circuit	diagram	for	the	Arduino	melody

THE	SKETCH
We’ll	start	off	with	a	simple	tune.	At	➊,	we	tell	the	IDE	that	the	tune	is	made	up	of	15	notes.	Then
we	store	the	notes	of	the	melody	in	a	character	array	as	a	text	string	in	the	order	in	which	they
should	be	played,	and	the	length	for	which	each	note	will	play	is	stored	in	another	array	as
integers.	If	you	want	to	change	the	tune,	you	can	alter	the	notes	in	the	array	at	➋,	and	the	number
of	beats	for	which	each	corresponding	note	plays	at	➌.	Finally	at	➍	we	set	the	tempo	at	which	the
tune	will	be	played.	Put	it	all	together,	and	what	does	it	play?

			//	Melody	(cleft)	2005	D.	Cuartielles	for	K3

			int	speakerPin	=	9;	//	Pin	connected	to	the	piezo

➊	int	length	=	15;	//	Number	of	notes
➋	char	notes[]	=	"ccggaagffeeddc	";	//	A	space	represents	a	rest
➌	int	beats[]	=	{	1,	1,	1,	1,	1,	1,	2,	1,	1,	1,	1,	1,	1,	2,	4	};
➍	int	tempo	=	300;

			void	playTone(int	tone,	int	duration)	{
					for	(long	i	=	0;	i	<	duration	*	1000L;	i	+=	tone	*	2)	{
							digitalWrite(speakerPin,	HIGH);
							delayMicroseconds(tone);
							digitalWrite(speakerPin,	LOW);
							delayMicroseconds(tone);
					}
			}

			//	Set	timeHigh	value	to	specific	notes
			void	playNote(char	note,	int	duration)	{
					char	names[]	=	{	'c',	'd',	'e',	'f',	'g',	'a',	'b',	'C'	};
					int	tones[]	=	{	1915,	1700,	1519,	1432,	1275,	1136,	1014,	956	};
					for	(int	i	=	0;	i	<	8;	i++)	{	//	Play	tone	that	corresponds
																																			//	to	note	name
							if	(names[i]	==	note)	{
									playTone(tones[i],	duration);
							}
					}

			}

			void	setup()	{
					pinMode(speakerPin,	OUTPUT);	//	Set	speakerPin	as	output
			}

			//	Play	the	tune
			void	loop()	{
					for	(int	i	=	0;	i	<	length;	i++)	{
							if	(notes[i]	==	'	')	{
									delay(beats[i]	*	tempo);	//	Rest
							}
							else	{
									playNote(notes[i],	beats[i]	*	tempo);
							}
							delay(tempo	/	2);	//	Pause	between	notes
					}
			}

PROJECT	8:	MEMORY	GAME
IN	THIS	PROJECT	WE’LL	CREATE	OUR	OWN	VERSION	OF	AN	ATARI
ARCADE	MEMORY	GAME	CALLED	TOUCH	ME,	USING	FOUR	LEDS,	FOUR
PUSHBUTTON	SWITCHES,	A	PIEZO	BUZZER,	AND	SOME	RESISTORS
AND	JUMPER	WIRES.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Piezo	buzzer

•	4	momentary	tactile	four-pin	pushbuttons

•	4	LEDs

•	4	220-ohm	resistors

LIBRARIES	REQUIRED
•	Tone

HOW	IT	WORKS
The	original	Atari	game	had	four	colored	panels,	each	with	an	LED	that	lit	up	in	a	particular
pattern	that	players	had	to	repeat	back	(see	Figure	8-1).

FIGURE	8-1:
The	original	Touch	Me	game

This	memory	game	plays	a	short	introductory	tune	and	flashes	an	LED.	When	you	press	the
correct	corresponding	button,	the	lights	flash	again	in	a	longer	sequence.	Each	time	you	repeat	the
sequence	back	correctly,	the	game	adds	an	extra	step	to	make	the	sequence	more	challenging	for
you.	When	you	make	an	error,	the	game	resets	itself.

THE	BUILD

1.	 Place	the	pushbuttons	in	the	breadboard	so	they	straddle	the	center	break	with	pins	A	and	B
on	one	side	of	the	break,	and	C	and	D	on	the	other,	as	shown	in	Figure	8-2.	(See	Project	1	for
more	information	on	how	the	pushbutton	works.)

1.	 FIGURE	8-2:
A	pushbutton	has	four	pins.

2.	 Connect	pin	B	of	each	pushbutton	to	the	GND	rail	of	your	breadboard,	and	connect	the	rail
to	Arduino	GND.

3.	 Connect	pin	D	of	each	pushbutton	to	Arduino’s	digital	pins	2	through	5	in	order.

4.	 Insert	the	LEDs	into	the	breadboard	with	the	shorter,	negative	legs	connected	to	pin	C	of
each	pushbutton.	Insert	the	positive	leg	into	the	hole	on	the	right,	as	shown	in	the	circuit
diagram	in	Figure	12-3.

PUSHBUTTON ARDUINO/LED

Pin	B GND

Pin	C LED	negative	legs

Pin	D Arduino	pins	2–5

5.	 Place	a	220-ohm	resistor	into	the	breadboard	with	one	wire	connected	to	the	positive	leg	of
each	LED.	Connect	the	other	wire	of	the	resistor	to	the	Arduino	as	follows.

LEDS ARDUINO/PUSHBUTTON

Positive	legs Arduino	pins	8–11	via	220-ohm	resistors

Negative	legs Pushbutton	pin	C

Make	sure	the	red	LED	connected	to	pin	11	is	paired	with	the	pushbutton	connected	to
pin	5,	the	yellow	LED	connected	to	pin	10	is	paired	with	the	pushbutton	connected	to	pin	4,
the	green	LED	connected	to	pin	9	is	paired	with	the	pushbutton	connected	to	pin	3,	and	the
blue	LED	connected	to	pin	8	is	paired	with	the	pushbutton	connected	to	pin	2.

6.	 Connect	the	black	wire	of	the	piezo	directly	to	Arduino	GND,	and	the	red	wire	to	Arduino
pin	12.

PIEZO ARDUINO

Red	wire Pin	12

Black	wire GND

7.	 Check	your	setup	against	Figure	8-3,	and	then	upload	the	code	in	“The	Sketch”	on	page	73.

7.	 FIGURE	8-3:
Circuit	diagram	for	the	memory	game

THE	SKETCH
The	sketch	generates	a	random	sequence	in	which	the	LEDs	will	light;	a	random	value	generated
for	y	in	the	pattern	loop	determines	which	LED	is	lit	(e.g.,	if	y	is	2,	the	LED	connected	to	pin	2
will	light).	You	have	to	follow	and	repeat	back	the	pattern	to	advance	to	the	next	level.

In	each	level,	the	previous	lights	are	repeated	and	one	more	randomly	generated	light	is	added
to	the	pattern.	Each	light	is	associated	with	a	different	tone	from	the	piezo,	so	you	get	a	different
tune	each	time,	too.	When	you	get	a	sequence	wrong,	the	sketch	restarts	with	a	different	random
sequence.	For	the	sketch	to	compile	correctly,	you	will	need	to	install	the	Tone	library	(available
from	http://nostarch.com.com/arduinohandbook/).	See	“Libraries”	on	page	7	for	details.

//	Used	with	kind	permission	from	Abdullah	Alhazmy	www.Alhazmy13.net

#include	<Tone.h>
Tone	speakerpin;
int	starttune[]	=	{NOTE_C4,	NOTE_F4,	NOTE_C4,	NOTE_F4,	NOTE_C4,
																			NOTE_F4,	NOTE_C4,	NOTE_F4,	NOTE_G4,	NOTE_F4,
																			NOTE_E4,	NOTE_F4,	NOTE_G4};
int	duration2[]	=	{100,	200,	100,	200,	100,	400,	100,	100,	100,	100,
																			200,	100,	500};
int	note[]	=	{NOTE_C4,	NOTE_C4,	NOTE_G4,	NOTE_C5,	NOTE_G4,	NOTE_C5};
int	duration[]	=	{100,	100,	100,	300,	100,	300};
boolean	button[]	=	{2,	3,	4,	5};	//	Pins	connected	to
																																	//	pushbutton	inputs

http://nostarch.com.com/arduinohandbook/

boolean	ledpin[]	=	{8,	9,	10,	11};	//	Pins	connected	to	LEDs
int	turn	=	0;									//	Turn	counter
int	buttonstate	=	0;		//	Check	pushbutton	state
int	randomArray[100];	//	Array	that	can	store	up	to	100	inputs
int	inputArray[100];

void	setup()	{
		Serial.begin(9600);
		speakerpin.begin(12);	//	Pin	connected	to	piezo	buzzer
		for	(int	x	=	0;	x	<	4;	x++)	{
				pinMode(ledpin[x],	OUTPUT);	//	Set	LED	pins	as	output
		}
		for	(int	x	=	0;	x	<	4;	x++)	{
				pinMode(button[x],	INPUT);	//	Set	pushbutton	pins	as	inputs
				digitalWrite(button[x],	HIGH);	//	Enable	internal	pullup;
																																			//	pushbuttons	start	in	high
																																			//	position;	logic	reversed
		}
		//	Generate	"more	randomness"	with	randomArray	for	the	output
		//	function	so	pattern	is	different	each	time
		randomSeed(analogRead(0));
		for	(int	thisNote	=	0;	thisNote	<	13;	thisNote	++)	{
				speakerpin.play(starttune[thisNote]);	//	Play	the	next	note
				if	(thisNote	==	0	||	thisNote	==	2	||	thisNote	==	4	||
								thisNote	==	6)	{	//	Hold	the	note
						digitalWrite(ledpin[0],	HIGH);
				}
				if	(thisNote	==	1	||	thisNote	==	3	||	thisNote	==	5	||
								thisNote	==	7	||	thisNote	==	9	||	thisNote	==	11)	{
						digitalWrite(ledpin[1],	HIGH);
				}
				if	(thisNote	==	8	||	thisNote	==	12)	{
						digitalWrite(ledpin[2],	HIGH);
				}
				if	(thisNote	==	10)	{
						digitalWrite(ledpin[3],	HIGH);
				}
				delay(duration2[thisNote]);
				speakerpin.stop();	//	Stop	for	the	next	note
				digitalWrite(ledpin[0],	LOW);
				digitalWrite(ledpin[1],	LOW);
				digitalWrite(ledpin[2],	LOW);
				digitalWrite(ledpin[3],	LOW);
				delay(25);
		}
		delay(1000);
}

void	loop()	{
		//	Generate	the	array	to	be	matched	by	the	player
		for	(int	y	=	0;	y	<=	99;	y++)	{
				digitalWrite(ledpin[0],	HIGH);
				digitalWrite(ledpin[1],	HIGH);
				digitalWrite(ledpin[2],	HIGH);
				digitalWrite(ledpin[3],	HIGH);
				//	Play	the	next	note
				for	(int	thisNote	=	0;	thisNote	<	6;	thisNote	++)	{
						speakerpin.play(note[thisNote]);	//	Hold	the	note
						delay(duration[thisNote]);							//	Stop	for	the	next	note
						speakerpin.stop();
						delay(25);
				}
				digitalWrite(ledpin[0],	LOW);
				digitalWrite(ledpin[1],	LOW);

				digitalWrite(ledpin[2],	LOW);
				digitalWrite(ledpin[3],	LOW);
				delay(1000);
				//	Limited	by	the	turn	variable
				for	(int	y	=	turn;	y	<=	turn;	y++)	{
						Serial.println("");
						Serial.print("Turn:	");
						Serial.print(y);
						Serial.println("");
						randomArray[y]	=	random(1,	5);	//	Assign	a	random	number	(1-4)
						//	Light	LEDs	in	random	order
						for	(int	x	=	0;	x	<=	turn;	x++)	{
								Serial.print(randomArray[x]);
								for	(int	y	=	0;	y	<	4;	y++)	{
										if	(randomArray[x]	==	1	&&	ledpin[y]	==	8)	{
												digitalWrite(ledpin[y],	HIGH);
												speakerpin.play(NOTE_G3,	100);
												delay(400);
												digitalWrite(ledpin[y],	LOW);
												delay(100);
										}
										if	(randomArray[x]	==	2	&&	ledpin[y]	==	9)	{
												digitalWrite(ledpin[y],	HIGH);
												speakerpin.play(NOTE_A3,	100);
												delay(400);
												digitalWrite(ledpin[y],	LOW);
												delay(100);
										}
										if	(randomArray[x]	==	3	&&	ledpin[y]	==	10)	{
												digitalWrite(ledpin[y],	HIGH);
												speakerpin.play(NOTE_B3,	100);
												delay(400);
												digitalWrite(ledpin[y],	LOW);
												delay(100);
										}
										if	(randomArray[x]	==	4	&&	ledpin[y]	==	11)	{
												digitalWrite(ledpin[y],	HIGH);
												speakerpin.play(NOTE_C4,	100);
												delay(400);
												digitalWrite(ledpin[y],	LOW);
												delay(100);
										}
								}
						}
				}
				input();
		}
}

//	Check	whether	input	matches	the	pattern
void	input()	{
		for	(int	x	=	0;	x	<=	turn;)	{
				for	(int	y	=	0;	y	<	4;	y++)	{
						buttonstate	=	digitalRead(button[y]);	//	Check	for	button	push
						if	(buttonstate	==	LOW	&&	button[y]	==	2)	{
								digitalWrite(ledpin[0],	HIGH);
								speakerpin.play(NOTE_G3,	100);
								delay(200);
								digitalWrite(ledpin[0],	LOW);
								inputArray[x]	=	1;
								delay(250);
								Serial.print("	");
								Serial.print(1);

								//	Check	if	value	of	user	input	matches	the	generated	array
								if	(inputArray[x]	!=	randomArray[x])	{
										fail();	//	If	not,	fail	function	is	called
								}
								x++;
						}
						if	(buttonstate	==	LOW	&&	button[y]	==	3)	{
								digitalWrite(ledpin[1],	HIGH);
								speakerpin.play(NOTE_A3,	100);
								delay(200);
								digitalWrite(ledpin[1],	LOW);
								inputArray[x]	=	2;
								delay(250);
								Serial.print("	");
								Serial.print(2);
								if	(inputArray[x]	!=	randomArray[x])	{
										fail();
								}
								x++;
						}
						if	(buttonstate	==	LOW	&&	button[y]	==	4)	{
								digitalWrite(ledpin[2],	HIGH);
								speakerpin.play(NOTE_B3,	100);
								delay(200);
								digitalWrite(ledpin[2],	LOW);
								inputArray[x]	=	3;
								delay(250);
								Serial.print("	");
								Serial.print(3);
								if	(inputArray[x]	!=	randomArray[x])	{
										fail();
								}
								x++;
						}
						if	(buttonstate	==	LOW	&&	button[y]	==	5)	{
								digitalWrite(ledpin[3],	HIGH);
								speakerpin.play(NOTE_C4,	100);
								delay(200);
								digitalWrite(ledpin[3],	LOW);
								inputArray[x]	=	4;
								delay(250);
								Serial.print("	");
								Serial.print(4);
								if	(inputArray[x]	!=	randomArray[x])	{
										fail();
								}
								x++;
						}
				}
		}
		delay(500);
		turn++;	//	Increment	turn	count
}

//	Function	used	if	player	fails	to	match	the	sequence
void	fail()	{
		for	(int	y	=	0;	y	<=	2;	y++)	{	//	Flash	lights	to	indicate	failure
				digitalWrite(ledpin[0],	HIGH);
				digitalWrite(ledpin[1],	HIGH);
				digitalWrite(ledpin[2],	HIGH);
				digitalWrite(ledpin[3],	HIGH);
				speakerpin.play(NOTE_G3,	300);
				delay(200);
				digitalWrite(ledpin[0],	LOW);

				digitalWrite(ledpin[1],	LOW);
				digitalWrite(ledpin[2],	LOW);
				digitalWrite(ledpin[3],	LOW);
				speakerpin.play(NOTE_C3,	300);
				delay(200);
		}
		delay(500);
		turn	=	-1;	//	Reset	turn	value	to	start	the	game	again
}

PROJECT	9:	SECRET	KNOCK	LOCK
FOR	CENTURIES	CLANDESTINE	GROUPS	HAVE	USED	SECRET	KNOCKS
TO	PREVENT	UNAUTHORIZED	ENTRY.	LET’S	BRING	THIS	SYSTEM	INTO
MODERN	TIMES,	BY	CREATING	OUR	OWN	ELECTRONIC	GATEKEEPER.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Tower	Pro	SG90	9g	servomotor

•	Piezo	buzzer

•	3	LEDs

•	1M-ohm	resistor

•	3	220-ohm	resistors

LIBRARIES	REQUIRED

•	Servo

HOW	IT	WORKS
In	this	project,	you’ll	make	a	circuit	that	moves	a	servo	arm	to	unlock	a	box	or	door	when	you
provide	the	correct	secret	knock.	So	far	we’ve	been	using	a	piezo	buzzer	only	to	make	noise,	but
we	can	also	use	it	as	a	sensor	to	detect	sounds—in	this	case,	knocks.	When	a	piezo	is	struck	it	rings
like	a	bell,	but	instead	of	producing	sound	it	outputs	voltage,	which	generates	a	number	depending
on	the	force	of	the	strike.	We’ll	measure	this	voltage	in	numbers,	and	if	the	knocks	fall	within	a
certain	range,	the	Arduino	will	register	them	as	correct.	If	three	knocks	of	the	correct	voltage	are
detected,	you’ve	cracked	the	code,	and	the	servo	arm	moves	to	unlock	the	box	or	door.

Here	are	the	two	lines	of	code	we’ll	use	later	in	the	sketch	to	set	the	range	for	the	voltage;	if
the	voltage	is	between	10	and	100,	the	knock	will	be	registered.

const	int	quietKnock	=	10;
const	int	loudKnock	=	100;

If	you	knock	too	softly	or	too	hard,	the	knock	won’t	register.	You’ll	need	to	do	three	“correct”
knocks	to	trigger	the	servo	arm	to	move.	When	the	correct	sequence	and	strength	of	knock	are
registered,	the	servo	arm	swings	90	degrees	to	“unlock”	whatever	it	is	set	up	with.	The	LEDs,
shown	in	Figure	9-1,	serve	as	indicators	of	your	lock’s	status:	the	red	LED	lights	when	the	knocks
are	incorrect	and	the	servo	arm	has	not	moved	(that	is,	the	box	or	door	is	still	locked);	the	yellow
LED	flashes	when	a	knock	is	registered	and	a	correct	code	is	sensed;	and	the	green	LED	lights	and
the	servomotor	moves	after	three	correct	knocks.

FIGURE	9-1:
The	LED	setup

For	the	best	result,	remove	your	piezo	from	its	casing	and	attach	it	directly	to	the	inside	of	a
box	or	outside	of	a	door	so	it	is	more	sensitive	to	the	vibration	of	the	knock.

THE	BUILD

1.	 Insert	a	1M-ohm	resistor	into	your	breadboard	and	connect	the	piezo’s	red	wire	to	one	leg
and	its	black	wire	to	the	other.	Connect	the	black	wire	to	the	GND	rail,	and	the	red	wire	to
Arduino	pin	A0.

PIEZO ARDUINO

Red	wire A0	via	1M-ohm	resistor

Black	wire GND	via	1M-ohm	resistor

2.	 Connect	the	servo’s	yellow	signal	wire	directly	to	Arduino	pin	9,	its	brown	wire	to	GND,	and
its	red	wire	to	+5V.

SERVO ARDUINO

Yellow	wire Pin	9

Red	wire +5V

Brown	wire GND

3.	 Insert	the	LEDs	into	your	breadboard	with	the	short,	negative	legs	connected	to	GND.	The
positive	legs	should	connect	to	the	pins	via	220-ohm	resistors	as	follows:	yellow	connects	to
Arduino	pin	3,	green	to	pin	4,	and	red	to	pin	5.

LEDS ARDUINO

Positive	legs Pins	3–5	via	220-ohm	resistors

Negative	legs GND

4.	 Connect	Arduino	pin	2	to	the	positive	power	rail.	In	our	setup	this	is	always	on,	but	you
could	add	a	switch	in	the	connection	between	Arduino	pin	2	and	the	power	rail	to	save	power
when	the	project	is	not	in	use.

5.	 Connect	the	breadboard	rails	to	Arduino	GND	and	+5V.

6.	 Make	sure	your	setup	matches	the	circuit	diagram	in	Figure	9-2,	and	then	upload	the	code	in
“The	Sketch”	on	page	82.

6.	 FIGURE	9-2:
The	circuit	diagram	for	the	secret	knock	lock

THE	SKETCH
We	first	call	on	the	Servo	library	and	set	Arduino	pin	9	to	control	the	servo.	LEDs	are	attached	to
Arduino	pins	3,	4,	and	5,	and	these	will	light	depending	on	the	validity	of	a	knock.	The	piezo	acts
as	a	sensor	rather	than	a	buzzer	in	this	project	and	is	attached	to	Arduino	pin	A0.	When	someone
knocks,	the	knock	is	sensed	by	the	piezo	and	a	voltage	value	is	sent	to	the	A0	analog	pin	of	the
Arduino	depending	on	the	strength	of	the	knock—the	harder	the	knock,	the	higher	the	value.	A
knock	with	a	value	below	10	is	considered	too	quiet,	and	one	with	a	value	above	100	too	loud,	so
neither	will	be	accepted	as	a	valid	knock.	The	red	LED	lights	if	the	knock	is	not	accepted,	and	the
yellow	LED	lights	if	it	is.	Any	knock	value	between	10	and	100	is	accepted	as	a	valid	knock	and
counted,	and	if	three	valid	knocks	are	received,	the	servomotor	moves	and	the	green	LED	lights.

As	mentioned	earlier,	these	are	the	two	lines	of	code	that	set	the	parameters	for	measuring	the
voltage:

const	int	quietKnock	=	10;
const	int	loudKnock	=	100;

If	you	were	feeling	particularly	secretive,	you	could	set	this	range	even	tighter	to	make	the
code	harder	to	crack.	Here’s	the	sketch:

/*	Created	18	September	2012	by	Scott	Fitzgerald
			Thanks	to	Federico	Vanzati	for	improvements
			http://arduino.cc/starterKit
			This	example	code	is	part	of	the	public	domain.
*/

#include	<Servo.h>
Servo	servo9;	//	Pin	connected	to	servo	mpo

const	int	piezo	=	A0;				//	Pin	connected	to	piezo
const	int	switchPin	=	2;	//	Pin	connected	to	servo
const	int	yellowLed	=	3;	//	Pin	connected	to	yellow	LED
const	int	greenLed	=	4;		//	Pin	connected	to	green	LED
const	int	redLed	=	5;				//	Pin	connected	to	red	LED

int	knockVal;			//	Value	for	the	knock	strength
int	switchVal;

const	int	quietKnock	=	10;	//	Set	min	value	that	will	be	accepted
const	int	loudKnock	=	100;	//	Set	max	value	that	will	be	accepted
boolean	locked	=	false;				//	A	true	or	false	variable
int	numberOfKnocks	=	0;				//	Value	for	number	of	knocks

void	setup()	{
		servo9.attach(9);
		pinMode(yellowLed,	OUTPUT);			//	Set	LED	pins	as	outputs
		pinMode(greenLed,	OUTPUT);
		pinMode(redLed,	OUTPUT);
		pinMode(switchPin,	INPUT);				//	Set	servo	pin	as	input
		Serial.begin(9600);
		digitalWrite(greenLed,	HIGH);	//	Green	LED	is	lit	when	the
																																//	sequence	is	correct
		servo9.write(0);
		Serial.println("The	box	is	unlocked!");
}

void	loop()	{
		if	(locked	==	false)	{
				switchVal	=	digitalRead(switchPin);
				if	(switchVal	==	HIGH)	{
						locked	=	true;
						digitalWrite(greenLed,	LOW);
						digitalWrite(redLed,	HIGH);
						servo9.write(90);
						Serial.println("The	box	is	locked!");
						delay(1000);
				}
		}
		if	(locked	==	true)	{
				knockVal	=	analogRead(piezo);	//	Knock	value	is	read	by	analog	pin
				if	(numberOfKnocks	<	3	&&	knockVal	>	0)	{
						if	(checkForKnock(knockVal)	==	true)	{	//	Check	for	correct
																																													//	number	of	knocks
								numberOfKnocks++;
						}
						Serial.print(3	-	numberOfKnocks);
						Serial.println("	more	knocks	to	go");
				}
				if	(numberOfKnocks	>=	3)	{	//	If	3	valid	knocks	are	detected,

																															//	the	servo	moves
						locked	=	false;
						servo9.write(0);
						delay(20);
						digitalWrite(greenLed,	HIGH);
						digitalWrite(redLed,	LOW);
						Serial.println("The	box	is	unlocked!");
				}
		}
}

boolean	checkForKnock(int	value)	{	//	Checks	knock	value
		if	(value	>	quietKnock	&&	value	<	loudKnock)	{	//	Value	needs	to	be
																																																	//	between	these
				digitalWrite(yellowLed,	HIGH);
				delay(50);
				digitalWrite(yellowLed,	LOW);
				Serial.print("Valid	knock	of	value	");
				Serial.println(value);
				return	true;
		}
		else	{	//	If	value	is	false	then	send	this	to	the	IDE	serial
				Serial.print("Bad	knock	value	");
				Serial.println(value);
				return	false;
		}
}

PART	3
SERVOS

PROJECT	10:	JOYSTICK-CONTROLLED	LASER
IN	THIS	PROJECT	WE	CREATE	A	JOYSTICK-CONTROLLED	LASER	BY
CONNECTING	TWO	SERVOS	TO	A	JOYSTICK	AND	USING	THIS	SETUP	AS
A	PAN-AND-TILT	CONTROLLER	FOR	A	LASER	POINTER.

PARTS	REQUIRED
•	Arduino

•	Breadboard

•	Jumper	wires

•	2	Tower	Pro	SG90	9g	servomotors

•	Analog	five-pin,	two-axis	joystick	module

•	Pan-and-tilt	housing	module

LIBRARIES	REQUIRED
•	Servo

HOW	IT	WORKS
Servos	are	small	motors	that	can	precisely	angle	their	arms	to	positions	between	0	and	180	degrees.
In	this	project	we’ll	place	the	servos	into	a	tilt-and-pan	mount.	The	tilt-and-pan	mount	is	a
worthy	investment,	as	it	makes	it	much	easier	to	attach	the	laser	to	the	servo.	Here	we’re
controlling	a	laser,	but	you	could	easily	replace	the	laser	with	a	webcam	or	another	small	device.
We	use	two	servos:	one	for	left	and	right	movement,	and	the	other	for	up	and	down	movement.	As
you	might	remember,	servomotors	have	three	wires,	shown	in	Figure	10-1:	positive	power	(red),
negative	power	or	ground	(black	or	brown),	and	signal	(typically	yellow,	orange,	or	white).

FIGURE	10-1:
Servos	have	three	wires.

Before	we	begin	building,	you	need	to	know	a	little	about	how	a	joystick	works.	The	joystick
shown	in	Figure	10-2	is	basically	two	potentiometers	and	a	button	that	allow	us	to	measure	the
movement	of	the	stick	in	two	dimensions.

FIGURE	10-2:
This	joystick	has	two	potentiometers	and	a	button	for	measuring	movement.

Potentiometers	are	variable	resistors	and	act	as	sensors	that	provide	us	with	a	voltage	that
varies	depending	on	the	rotation	of	the	device	around	its	shaft.	So	as	you	move	the	joystick	around
its	center,	its	resistance—and	therefore	its	output—varies.	The	outputs	from	the	potentiometers
are	analog,	so	they	can	have	a	value	only	between	0	and	1,023	when	read	by	the	analog	pin	of	the
Arduino.	This	number	sends	a	pulse	to	the	Arduino,	which	in	turn	tells	the	servos	how	far	to
move.	(See	Project	2	for	more	on	potentiometers.)

A	joystick	typically	has	five	pins:	VRx	(the	x-axis	signal),	VRy	(the	y-axis	signal),	SW	(a
pushbutton	we	won’t	be	using	in	this	project),	and	GND	and	+5V	for	power.

When	the	x-axis	of	the	joystick	is	moved	to	the	left	or	right,	the	corresponding	servo	will
move	in	that	direction;	when	the	y-axis	of	the	joystick	is	moved	up	or	down,	the	other	servo	will
move	up	or	down.

THE	BUILD

1.	 Connect	both	servos’	red	wires	to	the	+	5V	rail,	and	their	brown	wires	to	GND	on	the
breadboard.

2.	 Connect	one	of	the	servo’s	yellow	signal	wires	directly	to	Arduino	pin	9,	and	the	other	servo’s
signal	wire	directly	to	Arduino	pin	10,	as	shown	in	the	circuit	diagram	in	Figure	10-4.

SERVOS ARDUINO

Red	wires +5V

Brown	wires GND

Yellow	wire	1 Pin	9

Yellow	wire	2 Pin	10

3.	 Connect	the	GND	from	the	joystick	module	to	the	Arduino	GND	rail,	and	+5V	to	the
Arduino	+5V	rail.	Connect	the	VRx	pin	directly	to	Arduino	A0,	and	the	VRy	pin	directly	to
Arduino	A1.	Again,	the	SW	switch	connection	is	not	used	in	this	project.

JOYSTICK ARDUINO

+5V +5V

GND GND

VRx A0

VRy A1

SW Not	used

4.	 Connect	the	breadboard	rails	to	Arduino	GND	and	+5V,	and	then	check	that	your	setup
matches	that	of	Figure	10-3.

4.	 FIGURE	10-3:
The	circuit	diagram	for	the	joystick-controlled	laser.	Note	that	the	joystick	in	this	diagram	is	a	different	brand	than	the
one	used	in	the	project,	but	the	connections	are	the	same,	so	the	instructions	in	the	project	will	work	fine.

MOUNTING	THE	LASER
For	this	project,	I’ve	attached	the	servos	to	a	pan-and-tilt	housing	module;	you	should	be	able	to
find	this	housing	or	a	similar	one	for	a	relatively	reasonable	price	on	eBay	by	searching	for
“Arduino	pan-and-tilt	servo	kit.”	You	may	have	to	assemble	it	yourself,	but	this	is	simple	to	do
with	the	included	instructions.

Attach	a	laser	diode	to	the	top	of	the	module;	I	recommend	using	a	glue	gun	for	a	permanent
fixture,	but	you	can	use	tape	if	you	want	something	more	temporary.	Now	you	can	control	the
laser	using	the	joystick.	The	servos	will	clip	into	the	tilt-and-pan	module	as	shown	in	Figure	10-5.

FIGURE	10-4:
Clipping	the	servos	into	the	pan-and-tilt	module

Moving	the	joystick	left	and	right	will	move	the	x-axis	servo,	and	moving	the	joystick	up	and
down	will	move	the	y-axis	servo.	The	complete	assembly	is	shown	in	Figure	10-6.

FIGURE	10-5:
The	complete	assembly

THE	SKETCH
The	sketch	first	calls	on	the	Servo	library	and	then	defines	the	two	servos	as	tilt	and	pan.	The
joystick	x-axis	is	attached	to	Arduino	pin	A0	and	the	y-axis	to	Arduino	A1,	and	these	are	our	INPUT.
The	x-	and	y-axes	are	then	set	as	variables	for	movement.	The	tilt	servo	is	attached	to	Arduino
pin	9	and	pan	is	attached	to	Arduino	pin	10,	and	these	are	our	OUTPUT.	The	Arduino	then	reads	the
INPUT	from	the	joystick	and	changes	this	voltage	to	OUTPUT,	moving	the	servos	according	to	which
direction	is	chosen.

//	Used	with	kind	permission	from	http://learn.explorelabs.com/
//	Creative	Commons	4.0	Share	Alike	(CC	by	SA	4.0)	license

#include	<Servo.h>
Servo	tilt,	pan;		//	Create	servo	object
int	joyX	=	A0;				//	Analog	pin	connected	to	x-axis	servo
int	joyY	=	A1;				//	Analog	pin	connected	to	y-axis	servo
int	x,	y;									//	Variables	to	read	values

void	setup()	{
		tilt.attach(9);	//	Attach	tilt	servo	on	pin	9	to	the	servo	object
		pan.attach(10);	//	Attach	pan	servo	on	pin	10	to	the	servo	object
}

void	loop()	{
		x	=	joyX;	//	Read	value	of	x-axis	(between	0	and	1023)
		y	=	joyY;	//	Read	value	of	y-axis	(between	0	and	1023)
		x	=	map(analogRead(joyX),	0,	1023,	900,	2100);	//	Scale	it	to	use
																																																	//	with	servo	between
																																																	//	900	to	2100
																																																	//	microseconds
		y	=	map(analogRead(joyY),	0,	1023,	900,	2100);

		tilt.write(x);	//	Set	servo	position	according	to	scaled	value
		pan.write(y);
		delay(15);					//	Wait	for	servos	to	get	to	new	position
}

PROJECT	11:	REMOTE	CONTROL	SERVO
IN	THIS	PROJECT,	WE’LL	USE	THE	ARDUINO	TO	EXAMINE	AND	DECODE
SIGNALS	FROM	A	REMOTE	CONTROL,	AND	THEN	USE	THESE	CODES	TO
CONTROL	A	SERVO.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	38	kHz	IR	receiver

•	Remote	control

•	2	Tower	Pro	SG90	9g	servomotors

•	Pan-and-tilt	housing	module

LIBRARIES	REQUIRED
•	Servo

•	IRremote

HOW	IT	WORKS
First	we’ll	decode	the	remote	control	using	an	IR	receiver.	An	IR	receiver	has	three	pins:	OUT,
GND,	and	VCC	(shown	left	to	right	in	Figure	11-1).	Check	the	data	sheet	for	the	receiver	you
bought	to	make	sure	it	matches	this	pin	layout.	In	rare	cases	you	might	find	that	your	receiver’s
pin	layout	differs,	but	you	should	still	be	able	to	use	the	pinout	to	wire	it	up.

FIGURE	11-1:
IR	receiver—from	left	to	right,	the	pins	are	OUT,	GND,	and	VCC

You	will	also	need	a	remote	control.	You	can	use	any	kind	of	remote,	including	a	TV	remote,
but	it	is	best	to	use	an	old	one	that	you	no	longer	need.	When	you	press	a	button	on	the	remote,	it
sends	out	a	digital	value	that	is	picked	up	by	the	receiver.	This	value	is	different	for	each	button.
We’ll	decode	the	values	for	each	button	with	the	Arduino	and	then	assign	them	to	Arduino	pins	in
the	sketch	to	control	the	output—in	this	case,	a	servo.

By	personalizing	the	sketch	with	the	values	you	decode,	you	can	connect	certain	buttons	to
certain	instructions	and	use	your	remote	to	control	the	servos.	If	you	already	built	the	pan-and-
tilt	housing	model	from	Project	10,	you	can	reuse	that	here.	Otherwise,	flip	to	Project	10	for
instructions	on	setting	it	up.

We’ll	assign	a	button	to	the	directional	movement	of	the	servos	in	the	tilt-and-pan	housing,
so	in	total	four	buttons	will	control	all	movement:	left	and	right	for	the	x-axis	servo,	and	up	and
down	for	the	y-axis	servo.	Short	button	presses	will	move	the	servos	in	small	increments,	and
extended	presses	will	move	the	servo	continuously	until	the	maximum	or	minimum	value	is
reached.

THE	SETUP

1.	 Download	the	IRremote	library	from	http://www.nostarch.com/arduinohandbook/	and	add	it	to
your	libraries	folder,	as	shown	in	“Libraries”	on	page	7.

2.	 Insert	the	IR	receiver	into	a	breadboard.	Connect	the	OUT	pin	on	the	receiver	to	Arduino
pin	11,	GND	to	Arduino	GND,	and	VCC	to	Arduino	+5V.	Again,	with	some	versions	of	the
38	kHz	receiver,	the	pin	order	may	differ	from	what’s	shown	here,	so	check	the	data	sheet
corresponding	to	your	component.

IR	RECEIVER ARDUINO

http://www.nostarch.com/arduinohandbook/

OUT Pin	11

GND GND

VCC +5V

3.	 Now	upload	and	run	the	following	code.

/*	Copyright	2009	Ken	Shirriff
			Used	with	kind	permission
			http://arcfn.com
*/

#include	<IRremote.h>	//	Use	library
int	receiver	=	11;				//	Pin	connected	to	receiver

IRrecv	irrecv(receiver);
decode_results	results;
void	setup()	{
		Serial.begin(9600);		//	Show	keypresses	in	IDE
		irrecv.enableIRIn();	//	Start	up	receiver
}

void	loop()	{
		if	(irrecv.decode(&results))	{	//	If	there's	an	input,	decode	value
				Serial.println(results.value,	HEX);	//	Display	button	value
																																								//	on	Serial	Monitor	in
																																								//	hexadecimal	format
				irrecv.resume();	//	Receive	next	value
		}
}

The	sketch	first	calls	on	the	IRremote	library,	which	reads	from	the	IR	receiver	and	sends
the	corresponding	data	to	the	Arduino.	The	IR	receiver	is	assigned	to	pin	11	on	the	Arduino,
and	the	sketch	begins	communicating	with	the	Arduino	IDE	so	that	when	a	button	is	pressed
the	input	is	displayed	in	the	Serial	Monitor	in	real	time.	The	sketch	continues	in	a	loop,
looking	for	button	presses,	and	shows	the	corresponding	value	to	the	IDE.

4.	 Open	the	Serial	Monitor	in	your	IDE.

5.	 Point	your	remote	toward	the	receiver	and	try	pressing	different	buttons.	They	will	appear	in
the	Serial	Monitor	decoded	into	letters	and	numbers	in	a	format	known	as	hexadecimal
(HEX),	as	shown	in	Figure	11-2.	Try	short,	sharp	presses	to	get	the	best	results.	If	you	press	a
button	for	too	long,	the	Serial	Monitor	will	show	Fs	for	as	long	as	you	hold	the	button.

5.	 FIGURE	11-2:
When	a	button	on	the	remote	is	pressed,	the	HEX	code	for	that	button	is	displayed	in	the	Arduino	IDE	Serial	Monitor.

Write	down	the	numbers	that	appear	and	the	buttons	they	correspond	to.	You	will	need
these	numbers	later.

Now	that	we’ve	decoded	the	button	signals	from	the	remote	control,	we	can	use	them	to
control	two	servos.

THE	BUILD

1.	 Using	your	breadboard	setup	from	step	2	on	page	96,	with	the	receiver	already	connected,
attach	your	servos	to	the	Arduino	by	connecting	the	brown	wire	on	each	to	GND,	and	the
red	wire	to	+5V.	Then,	connect	the	yellow	control	wire	for	the	first	servo	to	Arduino	pin	10,
and	the	yellow	control	wire	for	the	second	servo	to	Arduino	pin	9.

SERVOS ARDUINO

Red	wires +5V

Brown	wires GND

Yellow	wire	(servo	1) Pin	10

Yellow	wire	(servo	2) Pin	9

2.	 Remember	to	attach	power	to	your	breadboard.

3.	 Check	that	your	setup	matches	the	circuit	diagram	in	Figure	11-3,	and	then	upload	the	code
in	“The	Sketch”	on	page	99.

3.	 FIGURE	11-3:
The	circuit	diagram	for	the	remote	control	servo

THE	SKETCH
Make	sure	you	use	the	values	that	you	decoded	in	step	3	of	“The	Setup”	on	page	96	in	place	of	the
values	included	here	when	completing	the	sketch.	When	you’re	changing	the	value	in	the	sketch	to
match	your	own	codes,	keep	the	0x	and	add	your	HEX	code	after	it.	For	example,	for	the	first
button	I	decoded,	the	HEX	code	is	FFA05F,	which	looks	like	this	in	the	sketch:

unsigned	long	Value1	=	0xFFA05F;

In	this	project	we’re	controlling	servos,	but	you	could	adapt	the	code	slightly	to	remotely
control	anything	that	needs	to	be	set	to	HIGH,	such	as	an	LED	or	piezo	buzzer.

The	sketch	calls	on	the	IRremote	library	to	read	from	the	receiver	and	the	Servo	library	to
move	the	motors.	The	first	two	buttons	are	assigned	to	the	x-axis	servo	to	move	the	angle	to	a
maximum	of	70	degrees	for	left	pan	or	160	degrees	for	right.	The	third	and	fourth	buttons	are
assigned	to	the	y-axis	servo	to	control	the	up	and	down	tilt	movement.

If	you	want	to	adapt	this	to	other	output,	change	the	code:

servo.write

to:

digitalWrite(pin,	HIGH)

Enter	the	sketch	as	follows:

/*	IR	Library	Copyright	Ken	Shirriff
			Used	with	kind	permission
			http://arcfn.com
	*/

#include	<Servo.h>				//	Include	the	Servo	library
#include	<IRremote.h>	//	Include	the	IRremote	library

unsigned	long	Value1	=	0xFFA05F;	//	Change	this	to	your	value
unsigned	long	Value2	=	0xFF50AF;	//	Change	this	to	your	value
unsigned	long	Value3	=	0xFF807F;	//	Change	this	to	your	value
unsigned	long	Value4	=	0xFF609F;	//	Change	this	to	your	value

int	RECV_PIN	=	11;
IRrecv	irrecv(RECV_PIN);
decode_results	results;
Servo	servo1;
Servo	servo2;

void	setup()	{									//	Set	up	routine
		Serial.begin(9600);
		irrecv.enableIRIn();	//	Start	the	IR	receiver
		servo1.attach(10);			//	Pin	connected	to	servo	1
		servo2.attach(9);				//	Pin	connected	to	servo	2
}

void	loop()	{	//	Loop	routine	runs	forever
		if	(irrecv.decode(&results))	{
				Serial.println(results.value,	HEX);
				irrecv.resume();	//	Receive	the	next	value
		}
		if	(results.value	==	Value1)	{	//	If	remote	code	matches	value	1,
																																	//	then	move	the	servo
				servo1.write(160);
		}
		else	if	(results.value	==	Value2)	{	//	If	remote	code	matches
																																						//	value	2,	then	move	the
																																						//	servo,	and	so	on
				servo1.write(70);
		}
		else	if	(results.value	==	Value3)	{
				servo2.write(70);
		}
		else	if	(results.value	==	Value4)	{
				servo2.write(160);
		}
}

PART	4
LCDS

PROJECT	12:	LCD	SCREEN	WRITER
NOT	ONLY	IS	THERE	SOMETHING	VERY	SATISFYING	ABOUT	HAVING	AN
LCD	SCREEN	DISPLAY	YOUR	OWN	MESSAGES,	BUT	IT’S	ALSO	VERY
USEFUL.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	16×2	LCD	screen	(Hitachi	HD44780	compatible)

•	50k-ohm	potentiometer

LIBRARIES	REQUIRED
•	LiquidCrystal

HOW	IT	WORKS

An	LCD	(liquid	crystal	display)	screen	is	made	of	two	sheets	of	polarizing	material	with	a	liquid
crystal	solution	between	them.	Current	passing	through	the	solution	creates	an	image	or,	in	this
case,	characters.	For	this	project,	you’ll	need	an	LCD	screen	that’s	compatible	with	the	Hitachi
HD44780	driver	for	it	to	work	with	the	Arduino—there	are	lots	of	them	out	there	and	you	can
usually	identify	them	by	their	16-pin	interface.

We’ll	use	the	LiquidCrystal	library	to	send	characters	to	the	LCD	screen.	The	LiquidCrystal
library	maps	the	characters	and	uses	the	print.lcd	commands	to	copy	the	message	from	the	sketch
to	the	screen.

Before	you	start,	you	need	to	prepare	your	LCD	screen.

PREPARING	THE	LCD	SCREEN
The	LCD	screen	will	probably	require	a	bit	of	assembly.	Your	screen	should	come	with	16	holes
(as	shown	in	Figure	12-1)	and	a	separate	strip	of	header	pins.

FIGURE	12-1:
The	LCD	screen	has	16	pins	running	along	the	top.

Take	the	strip	of	pins	and	break	off	a	row	of	16	pins.	Insert	the	shorter	side	of	the	pins	into	the
16	LCD	holes.	You’ll	need	to	solder	these	in	place:	solder	the	far-right	and	far-left	pins	first	to
hold	the	strip	in	place	and	wait	a	moment	for	them	to	set.	Then	solder	each	pin	in	turn,	holding
the	solder	and	soldering	iron	to	each	pin.	Holding	the	iron	to	the	pins	for	too	long	will	damage
them;	you	only	need	to	solder	them	for	a	couple	of	seconds.	(If	you’ve	never	soldered	before,	see
the	“Quick	Soldering	Guide”	on	page	18.)

THE	BUILD

1.	 Place	your	LCD	screen	in	the	breadboard,	inserting	the	header	pins	into	the	breadboard
holes.	Also	place	the	potentiometer	in	the	breadboard,	and	use	the	breadboard	and	jumper
wires	to	connect	your	LCD	screen,	Arduino,	and	potentiometer	as	shown	in	the	following
table	and	in	Figure	12-2.	There	are	three	GND	connections	from	the	LCD	module,	so	use
the	breadboard	GND	rail	to	make	those	connections.

1.	 FIGURE	12-2:
Connections	between	the	LCD	screen	and	the	Arduino.	LCD	screen	pins	15	and	16	are	the	power	and	ground	for	the
backlight	of	the	screen.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	7

5	R/W GND

6	Enable Pin	8

7	D0 Not	used

8	D1 Not	used

9	D2 Not	used

10	D3 Not	used

11	D4 Pin	9

12	D5 Pin	10

13	D6 Pin	11

14	D7 Pin	12

15	A	BcL+ +5V

16	K	BcL– GND

2.	 The	center	pin	of	the	50k-ohm	potentiometer	is	connected	to	LCD	pin	3	(VO).	The
potentiometer	controls	the	screen	contrast.	Turn	it	until	you	can	clearly	see	the	characters	on
the	screen.	Now	connect	one	of	the	outer	pins	to	GND	and	the	other	to	+5V.

3.	 Backlit	LCD	screens	(see	Figure	12-3)	will	have	resistors	built	in,	but	if	you	have	a	non-
backlit	LCD	screen,	you	should	insert	a	220-ohm	resistor	between	LCD	15	and	+5V.	(The
screen’s	packaging	will	say	whether	it	is	backlit	or	not.)

3.	 FIGURE	12-3:
A	backlit	LCD	screen

4.	 Your	setup	should	look	like	Figure	12-4.	Check	your	work	against	the	circuit	diagram	in
Figure	12-5,	and	then	upload	the	code	in	“The	Sketch”	on	page	107.

4.	 FIGURE	12-4:
The	complete	setup

4.	 FIGURE	12-5:
The	circuit	diagram	for	the	LCD	screen	writer

THE	SKETCH
This	sketch	is	included	in	your	IDE	examples.	Load	it	from	the	IDE	by	going	to	File	 	Examples	
	LiquidCrystal	and	then	clicking	Scroll.	The	sketch	uses	the	LiquidCrystal	library	that’s	built
into	the	Arduino	IDE	to	send	messages	from	the	Arduino	to	the	LCD	screen.	You	can	change	the
message	by	replacing	"Arduino	Sketch"	at	➋.

To	use	this	circuit	setup	with	the	example	sketches	in	the	Arduino	IDE,	we	also	change	the
LCD	pins	in	the	sketch	(12,	11,	5,	4,	3,	2)	at	➊	to	7,	8,	9,	10,	11,	12,	as	these	are	the	pins	we’ve
assigned.	I’ve	re-created	the	sketch	here	as	you’ll	see	it	in	the	IDE,	but	with	those	changes	made.

			/*
			Library	originally	added	18	Apr	2008	by	David	A.	Mellis
					library	modified	5	Jul	2009	by	Limor	Fried	(http://www.ladyada.net)
					example	added	9	Jul	2009	by	Tom	Igoe
					modified	22	Nov	2010	by	Tom	Igoe
					This	example	code	is	in	the	public	domain.
					http://www.arduino.cc/en/Tutorial/LiquidCrystal

			LiquidCrystal	Library	-	scrollDisplayLeft()	and	scrollDisplayRight()

			Demonstrates	the	use	of	a	16x2	LCD	display.	The	LiquidCrystal
			library	works	with	all	LCD	displays	that	are	compatible	with	the
			Hitachi	HD44780	driver.	There	are	many	of	them	out	there,	and	you
			can	usually	tell	them	by	the	16-pin	interface.

			This	sketch	prints	"Arduino	Sketch"	to	the	LCD	and	uses	the
			scrollDisplayLeft()	and	scrollDisplayRight()	methods	to	scroll
			the	text.
			*/

			//	Include	the	library	code
			#include	<LiquidCrystal.h>

			//	Initialize	the	library	with	the	numbers	of	the	interface	pins

➊	LiquidCrystal	lcd(7,	8,	9,	10,	11,	12);

			void	setup()	{
					//	Set	up	the	LCD's	number	of	columns	and	rows
					lcd.begin(16,	2);
					//	Print	a	message	to	the	LCD

➋			lcd.print("Arduino	Sketch");
					delay(1000);
			}

			void	loop()	{
					//	Scroll	13	positions	(string	length)	to	the	left
					//	to	move	it	offscreen	left
					for	(int	positionCounter	=	0;	positionCounter	<	13;
			positionCounter++)	{
							//	Scroll	one	position	left
							lcd.scrollDisplayLeft();
							//	Wait	a	bit
							delay(150);
					}
					//	Scroll	29	positions	(string	length	+	display	length)	to	the	right
					//	to	move	it	offscreen	right
					for	(int	positionCounter	=	0;	positionCounter	<	29;
			positionCounter++)	{
							//	Scroll	one	position	right
							lcd.scrollDisplayRight();
							//	Wait	a	bit
							delay(150);
					}
					//	Scroll	16	positions	(display	length	+	string	length)	to	the	left
					//	to	move	it	back	to	center
					for	(int	positionCounter	=	0;	positionCounter	<	16;
			positionCounter++)	{
							//	Scroll	one	position	left
							lcd.scrollDisplayLeft();
							//	Wait	a	bit
							delay(150);
					}
					//	Delay	at	the	end	of	the	full	loop
					delay(1000);
			}

PROJECT	13:	WEATHER	STATION
IN	THIS	PROJECT	YOU’LL	SET	UP	A	WEATHER	STATION	TO	MEASURE
TEMPERATURE	AND	HUMIDITY,	AND	DISPLAY	THE	VALUES	ON	AN	LCD
SCREEN.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	50k-ohm	potentiometer

•	16x2	LCD	screen	(Hitachi	HD44780	compatible)

•	DHT11	humidity	sensor

LIBRARIES	REQUIRED
•	LiquidCrystal

•	DHT

HOW	IT	WORKS
The	humidity	sensor	used	in	this	project	is	the	relatively	cheap	DHT11,	shown	in	Figure	13-1,
which	measures	both	humidity	and	temperature.	It	uses	a	capacitive	humidity	sensor	and	resistive-
type	temperature	sensor	to	take	a	reading	from	its	environment.	It	sends	this	reading	to	the
Arduino	as	voltage,	and	the	Arduino	converts	this	to	readable	values	displayed	on	the	screen.	For
best	results,	you	should	mount	your	sensor	on	an	outside	wall	with	a	decent	amount	of	open	space.
You’ll	want	to	mount	your	LCD	screen	indoors	or	seal	it	carefully	in	a	clear,	waterproof	bag	or
casing	to	keep	it	protected	from	the	elements.

FIGURE	13-1:
The	DHT11	measures	both	temperature	and	humidity.

The	DHT11	comes	with	either	four	pins	or	three	pins.	The	sensor	shown	in	Figure	13-1	has
four	pins,	but	you	can	use	either	version	for	this	project,	because	you	won’t	be	using	pin	3.	Check
the	retailers	at	the	beginning	of	the	book	for	ideas	on	where	to	buy	a	DHT11.

THE	BUILD

1.	 First,	prepare	the	LCD	screen	as	per	the	soldering	instructions	in	“Preparing	the	LCD
Screen”	on	page	104.	Insert	the	DHT11	sensor	into	your	breadboard.	The	DHT11	pins	are
numbered	1	to	4	(or	3)	from	the	left,	when	the	front	is	facing	you.	Connect	pin	1	to	the	+5V
rail,	connect	pin	2	directly	to	Arduino	pin	8,	and	connect	pin	4	(or	3)	to	GND.

DHT11 ARDUINO

Pin	1 +5V

Pin	2 Pin	8

Pin	3 Not	used

Pin	4 GND

2.	 Insert	the	LCD	screen	into	the	breadboard	and	connect	the	pins	to	the	Arduino	as	shown	in
the	following	table	and	in	Figure	13-2.	The	GND	and	+5V	rails	will	have	multiple
connections.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	12

5	R/W GND

6	Enable Pin	11

7	D0 Not	used

8	D1 Not	used

9	D2 Not	used

10	D3 Not	used

11	D4 Pin	5

12	D5 Pin	4

13	D6 Pin	3

14	D7 Pin	2

15	A	BcL	+ +5V

16	K	BcL	– GND

2.	 FIGURE	13-2:
Inserting	the	LCD	screen	into	the	breadboard

3.	 Insert	a	potentiometer	into	the	breadboard	as	shown	in	Figure	13-3	and	connect	the	center
pin	to	LCD	pin	3.	Connect	one	outer	pin	to	the	+5V	rail	and	the	other	to	the	GND	rail.

3.	 FIGURE	13-3:
Inserting	the	potentiometer	into	the	breadboard

4.	 Remember	to	connect	the	power	rails	of	the	breadboard	to	Arduino	GND	and	+5V.	Confirm
that	your	setup	matches	the	circuit	diagram	in	Figure	13-4,	and	upload	the	code	in	“The
Sketch”	on	page	116.

4.	 FIGURE	13-4:
The	circuit	diagram	for	the	weather	station

THE	SKETCH
This	sketch	uses	the	LiquidCrystal	library,	which	comes	with	the	Arduino	IDE,	and	the	DHT

library,	which	you	will	need	to	download	and	install	from	http://nostarch.com/arduinohandbook/	(see
“Libraries”	on	page	7).	The	DHT	library	controls	the	function	of	the	sensor,	and	the	LCD	library
displays	the	readings	on	the	screen.

/*	Example	testing	sketch	for	various	DHT	humidity/temperature
sensors.	Written	by	ladyada,	public	domain.	*/

#include	<LiquidCrystal.h>
#include	"DHT.h"	//	Call	the	DHT	library
#define	DHTPIN	8	//	Pin	connected	to	DHT
LiquidCrystal	lcd(12,	11,	5,	4,	3,	2);
#define	DHTTYPE	DHT11		//	Define	the	type	of	DHT	module
DHT	dht(DHTPIN,	DHTTYPE);	//	Command	to	the	DHT.h	library

void	setup()	{
		dht.begin();	//	Start	the	sensor
		lcd.begin(16,	2);	//	LCD	screen	is	16	characters	by	2	lines
}

void	loop()	{
		float	h	=	dht.readHumidity();	//	Value	for	humidity
		float	t	=	dht.readTemperature();	//	Value	for	temperature
		t	=	t	*	9	/	5	+	32;	//	Change	reading	from	Celsius	to	Fahrenheit
		if	(isnan(t)	||	isnan(h))	{	//	Check	that	DHT	sensor	is	working
				lcd.setCursor(0,	0);
				lcd.print("Failed	to	read	from	DHT");		//	If	DHT	is	not	working,
																																											//	display	this
		}	else	{	//	Otherwise	show	the	readings	on	the	screen
				lcd.clear();
				lcd.setCursor(0,	0);
				lcd.print("Humidity:	");
				lcd.print(h);
				lcd.print("%");
				lcd.setCursor(0,	1);
				lcd.print("Temp:	");
				lcd.print(t);
				lcd.print("f");
		}
}

http://nostarch.com/arduinohandbook/

PROJECT	14:	FORTUNE	TELLER
IN	THIS	PROJECT,	WE’LL	CREATE	AN	ELECTRONIC	VERSION	OF	A
CLASSIC	FORTUNE-TELLING	DEVICE:	THE	MAGIC	8	BALL.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	16x2	LCD	screen	(Hitachi	HD44780	compatible)

•	Tilt	ball	switch

•	50k-ohm	potentiometer

•	1k-ohm	resistor

LIBRARIES	REQUIRED
•	LiquidCrystal

HOW	IT	WORKS
The	Magic	8	Ball,	a	novelty	toy	created	in	the	1950s,	is	made	of	a	hollow	sphere	in	which	a	20-
sided	die	floated	in	alcohol.	When	you	ask	the	ball	a	question	and	shake	it,	one	side	of	the	die
floats	up	and	displays	your	answer	in	the	ball’s	window.

For	this	project,	you’ll	use	a	tilt	ball	switch,	shown	in	Figure	14-1.	The	tilt	ball	switch	is
composed	of	a	metal	ball	inside	a	metal	casing	that	makes	a	connection	when	the	switch	is	in	an
upright	position.	If	you	tilt	the	switch,	the	ball	shifts	and	the	connection	is	broken.	There	are	lots
of	tilt	switches	available,	and	all	do	the	same	job.	In	this	project,	you’ll	ask	a	question	and	shake
the	switch.	When	the	switch	settles	upright	again,	it	connects	to	the	Arduino,	which	then
randomly	selects	a	response	from	eight	preset	answers	and	displays	it	on	the	LCD	screen.

FIGURE	14-1:
Tilt	ball	switch	inserted	in	the	breadboard

The	potentiometer	controls	the	contrast	of	the	LCD	screen.

THE	BUILD

1.	 Prepare	the	LCD	screen	as	per	the	soldering	instructions	in	“Preparing	the	LCD	Screen”	on
page	104.

2.	 Place	your	LCD	screen	in	the	breadboard,	inserting	the	header	pins	into	the	breadboard
holes.	Also	place	the	potentiometer	in	the	breadboard,	and	use	the	breadboard	and	jumper
wires	to	connect	your	LCD	screen,	Arduino,	and	potentiometer.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	12

5	R/W GND

6	Enable Pin	11

7	D0 Not	used

8	D1 Not	used

9	D2 Not	used

10	D3 Not	used

11	D4 Pin	5

12	D5 Pin	4

13	D6 Pin	3

14	D7 Pin	2

15	A	BcL	+ +5V

16	K	BcL	– GND

3.	 Remember	to	use	a	breadboard	rail	to	make	the	multiple	connections	to	the	Arduino	GND
pin,	as	shown	in	Figure	14-2.

3.	 FIGURE	14-2:
The	LCD	screen	is	connected	to	the	Arduino.

4.	 You	should	have	already	connected	the	center	pin	of	the	10k-ohm	potentiometer	to	LCD	pin
3	(VO).	Now	connect	one	of	the	outer	pins	to	GND	and	the	other	to	+5V.	This	controls	the
contrast	of	your	LCD	screen.

5.	 Insert	the	tilt	switch	into	your	breadboard	and	attach	one	side	to	Arduino	pin	6	via	a	1k-ohm
resistor	and	the	other	side	to	GND.

TILT	BALL	SWITCH ARDUINO

Leg	1 Pin	6	via	1k-ohm	resistor

Leg	2 GND

6.	 Connect	your	breadboard	rails	to	the	Arduino	+5V	and	GND	for	power.

7.	 Confirm	that	your	setup	matches	Figure	14-3,	and	upload	the	code	in	“The	Sketch”	on	page
122.

7.	 FIGURE	14-3:
The	circuit	diagram	for	the	fortune	teller

THE	SKETCH
The	code	for	this	project	is	fairly	simple.	When	you	switch	on	the	Arduino,	the	LCD	screen
displays	the	message	Ask	a	Question.	Shaking	the	tilt	switch	activates	the	sketch,	and	the	Arduino
chooses	a	random	answer	from	the	eight	available	answers	(cases	0–7).

Here’s	the	line	in	the	code	that	does	this:

reply	=	random(8);

To	add	in	your	own	responses,	change	the	value	8	to	the	number	of	possible	responses,	and
then	add	your	responses	(or	cases)	in	the	same	style	as	the	others:

case	8:
		lcd.print("You	betcha");
		break;

Here’s	the	full	sketch:

/*	Created	13	September	2012	by	Scott	Fitzgerald
			http://arduino.cc/starterKit
			This	example	code	is	part	of	the	public	domain
*/

#include	<LiquidCrystal.h>

LiquidCrystal	lcd(12,	11,	5,	4,	3,	2);	//	Pins	attached	to	LCD	screen

const	int	switchPin	=	6;	//	Pin	attached	to	tilt	switch
int	switchState	=	0;
int	prevSwitchState	=	0;
int	reply;

void	setup()	{
		lcd.begin(16,	2);
		pinMode(switchPin,	INPUT);			//	Set	tilt	switch	pin	as	an	input
		lcd.print("FORTUNE	TELLER");	//	Print	this	on	line	1
		lcd.setCursor(0,	1);
		lcd.print("Ask	a	Question");	//	Print	this	on	line	2
}

void	loop()	{
		switchState	=	digitalRead(switchPin);	//	Read	tilt	switch	pin
		if	(switchState	!=	prevSwitchState)	{
				if	(switchState	==	LOW)	{	//	If	circuit	is	broken,	give	answer
						reply	=	random(8);	//	Reply	is	1	of	8	random	cases	as	below
						lcd.clear();
						lcd.setCursor(0,	0);
						lcd.print("The	answer	is:	");	//	Print	this	to	the	screen
						lcd.setCursor(0,	1);

						switch	(reply)	{	//	Reply	will	be	one	of	the	following	cases
								case	0:
										lcd.print("Yes");
										break;

								case	1:
										lcd.print("Probably");
										break;

								case	2:
										lcd.print("Definitely");
										break;

								case	3:
										lcd.print("Don't	be	silly");
										break;

								case	4:
										lcd.print("Of	course");
										break;

								case	5:
										lcd.print("Ask	again");
										break;

								case	6:
										lcd.print("Doubtful");
										break;

								case	7:
										lcd.print("No");

										break;
						}
				}
		}
			prevSwitchState	=	switchState;	//	Reset	the	switch
}

PROJECT	15:	REACTION	TIMER	GAME
IN	THIS	PROJECT,	LET’S	COMBINE	OUR	LCD	SCREEN	WITH	AN	RGB	LED
AND	A	PIEZO	BUZZER	TO	MAKE	A	REACTION	TIMER	GAME.

PARTS	REQUIRED

•	Arduino	board

•	Breadboard

•	Jumper	wires

•	16x2	LCD	screen	(Hitachi	HD44780	compatible)

•	RGB	LED	module

•	Piezo	buzzer

•	Momentary	tactile	four-pin	pushbutton

•	50k-ohm	potentiometer

•	220-ohm	resistor

LIBRARIES	REQUIRED
•	LiquidCrystal

HOW	IT	WORKS
You	start	the	game	by	holding	down	the	pushbutton.	The	RGB	LED	lights	up	and	fades	through
some	random	colors.	Your	aim	is	to	react	as	quickly	as	possible	when	it	turns	red	and	release	the
pushbutton.	The	LCD	screen	shows	your	reaction	time	in	milliseconds,	from	when	the	LED
turned	red	to	when	you	released	the	button	(see	Figure	15-1).

FIGURE	15-1:
After	you	release	the	pushbutton,	your	reaction	time	will	be	shown	on	the	LED	screen.

The	piezo	buzzer	tries	to	distract	you	by	making	random	sounds.	If	you	release	the	button	too
soon,	the	LCD	screen	displays	a	message	saying	so,	and	you’ll	have	to	start	over.

As	its	name	implies,	an	RGB	LED	is	actually	three	LEDs	in	one:	red,	green,	and	blue	(see
Figure	15-2).

FIGURE	15-2:
An	RGB	LED	can	be	red,	green,	or	blue.

RGB	is	an	additive	color	model,	which	means	that	by	combining	the	light	of	two	or	more
colors	we	can	create	other	colors.	Red,	green,	and	blue	are	the	additive	primary	colors	usually
used	as	the	base	for	other	colors,	as	shown	in	Figure	15-3.

FIGURE	15-3:
The	RGB	color	model	is	additive.

Let’s	take	a	look	at	an	RGB	LED	in	a	bit	more	detail.	Figure	15-4	shows	a	clear	common-
cathode	LED.	Note	that	the	LED	has	four	legs	instead	of	the	usual	two:	one	each	for	red,	green,
and	blue,	and	the	final	one	is	either	the	cathode	or	anode.	In	this	case	the	longest	pin	is	the
cathode,	and	it	connects	to	ground	(GND).

FIGURE	15-4:
An	RGB	LED	has	four	legs	instead	of	the	usual	two.

The	RGB	LED	used	in	this	project	is	on	a	module	with	built-in	resistors,	which	allows	us	to
save	space	on	our	breadboard.

THE	BUILD

1.	 Prepare	the	LCD	screen	as	per	the	soldering	instructions	in	“Preparing	the	LCD	Screen”	on
page	104.

2.	 Place	your	LCD	screen	in	the	breadboard,	inserting	the	header	pins	into	the	breadboard
holes.	Also	place	the	potentiometer	in	the	breadboard,	and	use	the	breadboard	and	jumper
wires	to	connect	your	LCD	screen,	Arduino,	and	potentiometer.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	11

5	R/W GND

6	Enable Pin	12

7	D0 Not	used

8	D1 Not	used

9	D2 Not	used

10	D3 Not	used

11	D4 Pin	5

12	D5 Pin	4

13	D6 Pin	3

14	D7 Pin	2

15	A	BcL	+ +5V

16	K	BcL	– GND

3.	 You	should	have	already	connected	the	center	pin	of	the	50-kilohm	potentiometer	to	LCD
pin	3	(VO).	Now	connect	one	of	the	outer	pins	to	GND	and	the	other	to	+5V.	This	controls
the	contrast	of	your	LCD	screen.

4.	 Insert	the	pushbutton	into	the	breadboard	so	that	it	straddles	the	break	in	the	center.	We’ll
label	the	pins	as	shown	in	Figure	15-5.

4.	 FIGURE	15-5:
The	pushbutton	straddles	the	center	break.

Connect	pin	A	to	ground	via	a	220-ohm	resistor,	pin	C	to	Arduino	pin	9,	and	pin	D	to
+5V	(see	Project	1	for	more	on	how	the	pushbutton	works).

PUSHBUTTON ARDUINO

Pin	A GND	via	220-ohm	resistor

Pin	C Pin	9

Pin	D +5V

5.	 Insert	the	RGB	module	and	connect	the	red	pin	to	Arduino	pin	8,	green	to	pin	6,	blue	to	pin
7,	and	+	to	+5V.

RGB	LED ARDUINO

Red Pin	8

Green Pin	6

Blue Pin	7

+ +5V

6.	 Connect	the	piezo	buzzer’s	red	wire	directly	to	Arduino	pin	13	and	its	black	wire	to	GND.

PIEZO ARDUINO

Red	wire Pin	13

Black	wire GND

7.	 Check	your	build	against	Figure	15-7,	and	then	upload	the	code	in	“The	Sketch”	on	page	130

to	start	playing!

7.	 FIGURE	15-6:
Circuit	diagram	for	the	reaction	timer	game.	You’ll	probably	find	that	it’s	easier	to	add	all	the	GND	and	+5V	wires
before	the	data	wires.

THE	SKETCH
When	you	press	and	hold	the	pushbutton,	the	LED	flashes	random	colors	and	eventually	turns
red.	The	duration	of	time	for	which	each	color	shows	is	set	to	random,	as	is	the	duration	of	the
pauses	between	lights.	This	means	you	can’t	learn	the	sequence	of	the	colors	and	predict	when	the
LED	might	turn	red.

You	can	make	the	game	more	difficult	by	increasing	the	duration	of	the	intervals	in	the
following	line	of	the	sketch:

PSE	=	random(500,	1200);

The	full	sketch	is	as	follows:

//	Created	by	Steven	De	Lannoy	and	reproduced	with	kind	permission
//	http://www.wingbike.nl
//	Used	an	RGB	LED	with	a	common	anode	(3	cathodes:	R,	G,	B)
#include	<LiquidCrystal.h>
LiquidCrystal	lcd(12,	11,	5,	4,	3,	2);
int	LEDR	=	8;			//	Pin	connected	to	red	LED
int	LEDB	=	7;			//	Pin	connected	to	blue	LED
int	LEDGr	=	6;		//	Pin	connected	to	green	LED
int	Button	=	9;	//	Pin	connected	to	pushbutton
int	COLOR;						//	Variable	color
int	Beep;
int	PSE;								//	Variable	pause
int	TME;								//	Time
int	RTME	=	0;			//	Reaction	time

void	setup()	{
		lcd.begin(16,	2);
		pinMode(LEDR,	OUTPUT);			//	Set	LED	pins	as	output
		pinMode(LEDB,	OUTPUT);
		pinMode(LEDGr,	OUTPUT);
		pinMode(Button,	INPUT);		//	Set	pushbutton	as	input
		digitalWrite(LEDR,	LOW);	//	Switch	on	all	LED	colors
		digitalWrite(LEDB,	LOW);
		digitalWrite(LEDGr,	LOW);
}

void	loop()	{
		lcd.clear();	//	Clear	screen
		lcd.print("Hold	Button	to");	//	Display	message	on	LCD	screen
		lcd.setCursor(0,	1);	//	Move	to	second	line
		lcd.print("start.");
		while	(digitalRead(Button)	==	LOW)	{	//	Test	does	not	start	until
																																							//	button	is	pushed	(and	held)
				tone(13,	1200,	30);
				delay(1400);
				noTone(13);
		}

		lcd.clear();
		digitalWrite(LEDR,	HIGH);	//	Switch	off	start	light
		digitalWrite(LEDB,	HIGH);
		digitalWrite(LEDGr,	HIGH);
		randomSeed(analogRead(0));	//	Random	noise	from	pin	0
		COLOR	=	random(1,	4);	//	Generate	random	color
		PSE	=	random(500,	1200);	//	Set	random	pause	duration	between	lights
		//	Repeat	this	loop	while	color	is	green	or	blue	AND	pushbutton
		//	is	held
		while	(COLOR	!=	1	&&	digitalRead(Button)	==	HIGH)	{
				digitalWrite(LEDGr,	HIGH);
				digitalWrite(LEDB,	HIGH);
				delay(PSE);
				randomSeed(analogRead(0));
				Beep	=	random(1,	4);	//	Select	random	beep	from	buzzer
																									//	(buzzer	beeps	1	in	3	times)
				PSE	=	random(750,	1200);	//	Select	random	pause	duration	between
																													//	lights	(to	increase	surprise	effect)
				if	(Beep	==	1)	{
						tone(13,	1600,	350);
						delay(750);
						noTone(13);
				}

				if	(COLOR	==	2)	{
						digitalWrite(LEDGr,	LOW);
				}
				if	(COLOR	==	3)	{
						digitalWrite(LEDB,	LOW);
				}
				delay(PSE);
				randomSeed(analogRead(0));
				COLOR	=	random(1,	4);	//	Select	random	color
		}
		//	Execute	this	loop	if	color	is	red
		if	(COLOR	==	1	&&	digitalRead(Button)	==	HIGH)	{
				digitalWrite(LEDGr,	HIGH);
				digitalWrite(LEDB,	HIGH);
				delay(PSE);
				TME	=	millis();	//	Record	time	since	program	has	started
				digitalWrite(LEDR,	LOW);
				while	(digitalRead(Button)	==	HIGH)	{	//	Runs	until	button	is
																																										//	released,	recording	the
																																										//	reaction	time
						delay(1);
				}
				lcd.display();
				RTME	=	millis()	-	TME;	//	Reaction	time	in	ms
				lcd.print("Reaction	Time:");	//	Display	on	LCD	screen
				lcd.setCursor(0,	1);
				lcd.print(RTME);
		}

		//	Execute	if	color	is	NOT	red	but	the	pushbutton	is	released
		if	(COLOR	!=	1)	{
				lcd.print("Released	too");
				lcd.setCursor(0,	1);	//	Move	to	second	line
				lcd.print("soon!!!");
				tone(13,	3000,	1500);
				delay(500);
				noTone(13);
		}
		//	Test	does	not	restart	until	the	button	is	pushed	once
		while	(digitalRead(Button)	==	LOW)	{
				delay(10);
		}
		digitalWrite(LEDR,	LOW);	//	Reset	all	lights	to	begin	again
		digitalWrite(LEDB,	LOW);
		digitalWrite(LEDGr,	LOW);
		lcd.clear();
		lcd.print("Hold	Button	to");
		lcd.setCursor(0,	1);
		lcd.print("start.");
		int	Time	=	0;
		delay(1000);
}

PART	5
NUMERIC	COUNTERS

PROJECT	16:	ELECTRONIC	DIE
BOARD	GAMES	ARE	PERILOUS	ENOUGH	WITHOUT	ARGUMENTS	OVER
NUMBER	READINGS	FROM	FALLEN	OR	LOST	DICE.	THE	PERFECT
SOLUTION:	AN	ELECTRONIC	DIE.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	8	220-ohm	resistors

•	Seven-segment	LED	display

•	74HC595	shift	register

•	Momentary	tactile	four-pin	pushbutton

HOW	IT	WORKS
In	this	project	we’ll	create	a	die	using	a	seven-segment	LED	display.	When	the	pushbutton	is
pressed,	a	pulse	is	sent	to	the	Arduino,	and	the	LED	“shakes”	and	displays	a	random	digit	between
1	and	6.

This	project	uses	a	74HC595	shift	register,	a	small	integrated	circuit	(IC)	and	sequential	logic
counter	that	allows	the	Arduino	to	make	more	connections	than	it	usually	can	with	the	pins	it	has,
by	“shifting”	and	storing	data.	The	shift	register	has	16	pins;	at	one	end	you’ll	find	a	dot	or
semicircle,	which	marks	pin	1	on	the	left.	The	pins	are	then	numbered	counterclockwise	from

here.	Figure	16-1	shows	the	pinout,	and	Table	16-1	describes	the	function	of	each	pin.

FIGURE	16-1:
Pinout	of	the	74HC595	shift	register

TABLE	16-1:
74HC595	shift	register	pins

SHIFT	REGISTER	PINS CONNECTIONS PIN	FUNCTION

Pins	1–7,	15 Q0–Q7 Output	pins

Pin	8 GND Ground,	VSS

Pin	9 Q7 Serial	out

Pin	10 MR Master	Reclear,	active	low

Pin	11 SH_CP Shift	register	clock	pin	(CLOCK	pin)

Pin	12 ST_CP Storage	register	clock	pin	(LATCH	pin)

Pin	13 OE Output	Enable,	active	low

Pin	14 DS Serial	data	input	(DATA	pin)

Pin	16 VCC Positive	power

The	wire	attached	to	Arduino	pin	2	is	connected	to	our	pushbutton	and,	when	pressed,	will
create	a	pulse.	To	use	the	die,	push	the	button	to	make	the	digit	on	the	die	shake	and	display	a
random	digit.

THE	BUILD

1.	 Insert	the	seven-segment	LED	into	your	breadboard,	making	sure	it	straddles	the	center
break;	otherwise,	the	pins	opposite	each	other	will	connect	and	short-circuit.	Connect	pin	3
to	the	GND	rail,	and	connect	220-ohm	resistors	to	the	remaining	pins	except	pin	8,	which	is
not	used.	The	resistors	are	needed	to	prevent	the	segment	LEDs	from	burning	out.	See
Figure	16-2	for	this	setup.

1.	 FIGURE	16-2:
Connecting	the	seven-segment	LED

2.	 Insert	the	74HC595	shift	register	into	the	breadboard	with	the	semicircle	marker	of	the	IC	on
the	left	side.	The	bottom	left-hand	pin	should	be	pin	1.	Your	IC	needs	to	straddle	the	center
break,	as	shown	in	Figure	16-3.

2.	 FIGURE	16-3:
The	74HC595	shift	register	should	straddle	the	breadboard	center	break.

3.	 Carefully	make	the	connections	shown	in	the	following	table	between	the	seven-segment
LED	display	and	the	74HC595	shift	register.

SEVEN-SEGMENT	LED	DISPLAY SHIFT	REGISTER ARDUINO

Pin	1	(E)* Pin	4 	

Pin	2	(D)* Pin	3 	

Pin	3 	 GND

Pin	4	(C)* Pin	2 	

Pin	5	(DP)* Pin	7 	

Pin	6	(B)* Pin	1 	

Pin	7	(A)* Pin	15 	

Pin	8 	 Not	used

Pin	9	(F)* Pin	5 	

Pin	10	(G)* Pin	6 	

*	These	pins	require	a	220-ohm	resistor	between	the	seven-segment	LED	display	and	the	74HC595	shift	register.

4.	 Now	connect	the	remaining	shift	register	pins	to	the	Arduino	as	shown	in	the	following	table.

SHIFT	REGISTER ARDUINO

Pin	9 Not	used

Pin	10 +5V

Pin	11 Pin	12

Pin	12 Pin	8

Pin	13 GND

Pin	14 Pin	11

Pin	16 +5V

Pulse Pin	2

5.	 Insert	the	pushbutton	into	the	breadboard	with	the	pins	straddling	the	center	break,	as	shown
in	Figure	16-4.	Connect	one	side	to	pin	2	on	the	Arduino	and	the	other	side	to	GND.

5.	 FIGURE	16-4:
The	pushbutton	should	also	straddle	the	breadboard	center	break.

6.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	16-5,	and	upload	the	code	in
“The	Sketch”	on	page	140.

6.	 FIGURE	16-5:
The	circuit	diagram	for	the	electronic	die

THE	SKETCH
The	sketch	first	sets	the	pins	to	control	the	74HC595	chip	that	drives	the	seven-segment	LED.
When	the	seven-segment	LED	display	is	powered	up,	the	dot	is	lit.	When	you	press	the
pushbutton,	the	LEDs	light	in	a	short,	rotating	animation	to	signify	that	the	die	is	shaking.	After	a
moment	a	random	number	between	1	and	6	will	be	displayed.	Press	the	button	again	to	generate
your	next	roll	of	the	die.

//	Code	by	Warrick	A.	Smith	and	reproduced	with	kind	permission
//	http://startingelectronics.com

const	int	latchPin	=	8;			//	Pins	connected	to	shift	register
const	int	clockPin	=	12;
const	int	dataPin	=	11;
const	int	buttonPin	=	2;		//	Pin	connected	to	switch	wire
//	1	to	6	and	DP	(decimal	point)	on	7-segment	display
unsigned	char	lookup_7seg[]	=	{0x06,	0x5B,	0x4F,	0x66,	0x6D,	0x7D,	0x80};
//	Shaking	die	pattern	on	7-segment	display
unsigned	char	shake_dice[]	=	{0x63,	0x5C};

//	Rolling	die	on	7-segment	display
unsigned	char	roll_dice[]	=	{0x1C,	0x58,	0x54,	0x4C};
//	Vary	duration	of	time	before	die	number	is	received
int	rand_seed;
int	rand_num	=	0;																//	Generate	random	number
unsigned	char	shake_toggle	=	0;		//	For	shaking	dice	animation
int	index	=	0;																			//	For	rolling	dice	animation
int	shake_speed;																	//	Accelerates	dice	shake	speed

void	setup()	{
		pinMode(latchPin,	OUTPUT);					//	Output	pins	for	controlling	the
																																	//	shift	register
		pinMode(clockPin,	OUTPUT);
		pinMode(dataPin,	OUTPUT);
		pinMode(buttonPin,	INPUT);					//	Read	switch	wire	state
		digitalWrite(latchPin,	LOW);			//	Display	DP	on	7-segment	display
																																	//	at	startup
		shiftOut(dataPin,	clockPin,	MSBFIRST,	lookup_7seg[6]);
		digitalWrite(latchPin,	HIGH);
		randomSeed(analogRead(0));					//	Generate	random	seed
}

void	loop()	{
		if	(digitalRead(buttonPin))	{
				shake_speed	=	150;	//	Reset	die	shaking	speed
				delay(30);
				//	Generate	number	for	random	speed	and	show	shaking	animation
				while	(digitalRead(buttonPin))	{
						rand_seed++;						//	Generate	random	number
						//	Animate	shaking	die
						if	(shake_toggle)	{
								AnimateDice(0,	shake_dice);
								shake_toggle	=	0;
						}
						else	{
								AnimateDice(1,	shake_dice);
								shake_toggle	=	1;
						}
						delay(80	+	shake_speed);		//	Accelerate	animation	speed
						if	(shake_speed	>	0)	{
								shake_speed	-=	10;
						}
				}
				//	Animate	rolling	die
				for	(int	rolls	=	0;	rolls	<	(rand_seed	%	10	+	14);	rolls++)	{
						AnimateDice(index,	roll_dice);
						delay((1	+	rolls)	*	20);
						index++;
						if	(index	>	3)	{
								index	=	0;
						}
				}
				rand_num	=	random(0,	6);		//	Generate	number	thrown	on	die
				DiceNumber(rand_num);
		}
}

//	Display	the	die	number	on	7-segment	display
void	DiceNumber(unsigned	char	num)	{
		digitalWrite(latchPin,	LOW);
		shiftOut(dataPin,	clockPin,	MSBFIRST,	lookup_7seg[num]);
		digitalWrite(latchPin,	HIGH);
}

//	Display	one	frame	of	the	shaking	or	rolling	dice
void	AnimateDice(int	seg,	unsigned	char	*table)	{
		digitalWrite(latchPin,	LOW);
		shiftOut(dataPin,	clockPin,	MSBFIRST,	table[seg]);
		digitalWrite(latchPin,	HIGH);
}

PROJECT	17:	ROCKET	LAUNCHER
IN	THIS	PROJECT	WE’LL	CREATE	A	PROGRAMMABLE	COUNTDOWN
TIMER	THAT	WE’LL	USE	TO	LAUNCH	A	ROCKET	BY	IGNITING	A	FUSE
WHEN	THE	COUNTDOWN	REACHES	0.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Four-digit,	seven-segment	serial	display

•	Piezo	buzzer

•	2	momentary	tactile	four-pin	pushbutton

•	50k-ohm	potentiometer

•	3	LEDs	(red,	green,	yellow)

•	3	220-ohm	resistors

LIBRARIES	REQUIRED
•	SoftwareSerial

We’ll	use	a	four-digit,	seven-segment	serial	display	that	has	a	built-in	integrated	circuit	to
control	the	LEDs	and	can	be	connected	to	the	Arduino	with	only	three	wires.	When	choosing
your	display,	make	sure	it	has	an	RX	input	so	you’ll	be	able	to	control	it	with	only	one	wire.

HOW	IT	WORKS
You	could	use	a	timer	like	this	to	set	off	anything	that	requires	power,	like	a	servomotor,	LED,	or
alarm.	You’ll	use	a	potentiometer	to	select	the	duration	of	your	countdown	(anywhere	from	5	to
60	seconds).	The	LED	screen	will	display	the	digits	so	you	can	see	what	you	are	setting	the
countdown	to.	We’ll	include	two	pushbuttons:	an	Arm	button	and	a	Launch	button.	Once	you’ve
chosen	the	duration	of	your	countdown,	press	the	Arm	button	to	ready	the	timer.	The	red	LED
light	shows	that	it’s	armed.	(The	Arm	button	is	a	safety	feature	to	prevent	you	from	accidentally
setting	off	the	launcher.)	Once	you’ve	armed	the	rocket,	press	the	Launch	button	to	start	the
countdown.	The	green	LED	light	signifies	that	it’s	ready,	and	the	countdown	begins.

As	the	timer	counts	down,	the	piezo	buzzer	beeps	every	second.	When	the	counter	reaches	five
seconds,	the	timer	beeps	increasingly	quickly	until	launch.	When	the	timer	reaches	0,	power	is
sent	through	pin	7	to	whatever	output	you	have	there—in	this	case,	it	lights	the	yellow	LED.	You
could	connect	this	timer	to	a	buzzer,	a	servomotor	to	unlock	a	door,	or	even	a	fuse	to	ignite	a
rocket.	I’ll	show	you	how	to	make	your	own	simple	ignition	for	a	fuse	later	in	this	project.

THE	BUILD

1.	 Connect	the	seven-segment	serial	display	RX	pin	to	Arduino	pin	3,	connect	VCC	to	+5V,	and
connect	GND	to	Arduino	GND	via	the	breadboard,	as	shown	in	Figure	17-1.	You	might
need	to	strip	back	some	of	the	wire	to	make	the	connection.

SEVEN-SEGMENT	SERIAL	DISPLAY ARDUINO

RX Pin	3

VCC +5V

GND GND

1.	 FIGURE	17-1:
Connecting	the	seven-segment	display	to	the	Arduino

2.	 Insert	the	potentiometer	into	the	breadboard	and	connect	the	left	pin	to	+5V,	the	center	pin
to	Arduino	pin	A0,	and	the	right	pin	to	GND,	as	shown	in	Figure	17-2.

POTENTIOMETER ARDUINO

Left	pin +5V

Center	pin A0

Right	pin GND

2.	 FIGURE	17-2:
Placing	the	potentiometer	into	the	breadboard

3.	 Connect	the	red	wire	of	the	piezo	buzzer	to	Arduino	pin	4	and	the	black	wire	to	GND,	as
shown	in	Figure	17-3.

PIEZO ARDUINO

Red	wire Pin	4

Black	wire GND

3.	 FIGURE	17-3:
Connecting	the	piezo	buzzer

4.	 Insert	the	two	pushbuttons	into	your	breadboard,	with	pins	A	and	B	on	one	side	of	the	center
break	and	pins	D	and	C	on	the	other,	following	the	configuration	in	Figure	17-4.

4.	 FIGURE	17-4:
The	pin	connections	of	the	pushbutton

5.	 Next,	we’ll	connect	the	pushbuttons,	as	shown	in	Figure	17-5.	To	create	the	Arm	button,
connect	pin	C	of	the	first	pushbutton	to	GND	and	pin	D	to	Arduino	pin	5.	To	create	the
Launch	button,	connect	pin	C	of	the	other	pushbutton	to	GND	and	pin	D	to	Arduino	pin	6.

PUSHBUTTONS ARDUINO

Arm	pin	C GND

Arm	pin	D Pin	5

Launch	pin	C GND

Launch	pin	D Pin	6

5.	 FIGURE	17-5:
Connecting	the	pushbuttons	and	LEDs

6.	 Insert	the	red	LED	into	the	breadboard	with	the	shorter,	negative	leg	connected	to	pin	B	of
the	Arm	button.	Connect	the	other	leg	to	a	220-ohm	resistor,	and	connect	the	other	side	of
the	resistor	to	+5V.	Then	insert	the	green	LED	with	the	negative	leg	connected	to	pin	B	of
the	Launch	button,	and	the	positive	leg	connected	to	+5V	via	a	220-ohm	resistor.

RESISTORS ARDUINO

Negative	legs GND

Positive	legs +5V	via	220-ohm	resistor

7.	 Connect	the	igniter.	We’re	using	a	yellow	LED	as	our	igniter	indicator	for	now.	Insert	it	into
the	breadboard	with	the	negative	leg	connected	to	GND	and	the	positive	leg	connected	to
Arduino	pin	7	via	a	220-ohm	resistor.	(See	“Create	a	Working	Fuse”	on	page	149	to	learn	how
to	make	your	own	fuse	igniter.)

IGNITER ARDUINO

Negative	leg GND

Positive	leg Pin	7	via	220-ohm	resistor

When	the	countdown	reaches	0,	pin	7	is	set	to	HIGH	and	triggers	the	igniter.	Instead	of
actually	igniting	a	fuse,	we	light	the	yellow	LED	to	represent	the	ignition.

8.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	17-6,	and	upload	the	code	in
“The	Sketch”	on	page	151.

8.	 FIGURE	17-6:
The	circuit	diagram	for	the	rocket	launcher

CREATE	A	WORKING	FUSE
Instead	of	using	an	LED	to	indicate	ignition,	you	can	create	a	working	fuse	using	a	simple
Christmas	tree	light.	Be	sure	to	wear	eye	protection	when	creating	your	fuse.	These	instructions
are	for	entertainment	purposes	and	should	be	carried	out	only	by	an	adult.

WARNING
There	may	be	restrictions	to	launching	a	hobby	rocket	or	firework	in	your	country	or	state,	so	please	check
beforehand.	It	is	your	responsibility	to	keep	project	use	within	the	law.

1.	 Using	a	hobby	drill,	apply	light	pressure	to	the	top	of	the	glass	casing	on	a	Christmas	light	to
cut	it	off	(see	Figure	17-7).

1.	 FIGURE	17-7:
Cutting	the	tip	with	a	hobby	drill

2.	 Cut	near	the	tip	of	the	glass	casing	and	the	top	should	pop	off	easily	(Figure	17-8).

2.	 FIGURE	17-8:
Popping	off	the	tip

3.	 Now	cut	off	the	head	of	a	wooden	match	(make	sure	you	don’t	ignite	it!)	and	gently	insert	the
match	head	into	the	open	bulb,	taking	care	not	to	damage	the	filament	(Figure	17-9).

3.	 FIGURE	17-9:
Inserting	a	match	head	into	the	bottom	half	of	the	bulb

4.	 Finally,	connect	the	bulb	wires	to	your	ignition	wires.	When	power	is	sent	to	the	bulb,	the
filament	will	heat	up	and	ignite	the	match	head	(Figure	17-10),	creating	enough	energy	to
ignite	a	fuse.

4.	 FIGURE	17-10:
After	the	fuse	has	been	lit

THE	SKETCH
The	sketch	first	defines	each	component	and	its	connection	to	the	Arduino.	The	SoftwareSerial
library	controls	the	four-digit,	seven-segment	serial	LED	display,	while	the	analog	input	from	the
potentiometer	changes	the	time	displayed	from	5	to	60	seconds.	When	pressed,	the	Arm	button
acts	as	a	digital	switch	and	safety	feature	to	allow	the	Launch	button	to	be	pressed.	If	the	Arm
button	is	pushed	during	countdown,	the	countdown	aborts	and	the	display	resets.

The	tone	commands	in	the	sketch	pulse	the	piezo	buzzer	in	time	to	the	countdown	to	create	a
beep.	When	the	countdown	reaches	0,	the	igniter	pin	(in	this	case,	connected	to	an	LED)	is	set	to
HIGH	and	turns	on	the	LED.

//	Ardunaut	Arduining.com,	reproduced	with	kind	permission

#define	FuseTIME						1500			//	Duration	of	fuse	current	in	ms
#include	<SoftwareSerial.h>		//	Call	the	SoftwareSerial	library

#define	Fuse					7					//	Pin	connected	to	fuse	(your	LED	or	igniter)
#define	GoButt			6					//	Pin	connected	to	Launch	button
#define	ArmButt		5					//	Pin	connected	to	Arm	button
#define	BuzzPin		4					//	Pin	connected	to	piezo	buzzer
#define	TXdata			3					//	Pin	connected	to	RX	of	display
#define	RXdata			2					//	Not	used
#define	SetPot			0					//	Analog	pin	connected	to	potentiometer

SoftwareSerial	mySerialPort(RXdata,	TXdata);

void	setup()	{
		pinMode(TXdata,	OUTPUT);
		pinMode(RXdata,	INPUT);
		pinMode(Fuse,	OUTPUT);
		pinMode(ArmButt,	INPUT);							//	Set	Arm	button	pin	to	input
		pinMode(GoButt,	INPUT);								//	Set	Launch	button	pin	to	input

		digitalWrite(Fuse,	LOW);							//	Open	igniter	circuit
		digitalWrite(ArmButt,	HIGH);			//	Turn	on	resistor
		digitalWrite(GoButt,	HIGH);				//	Turn	on	resistor
		mySerialPort.begin(9600);
		delay(10);																					//	Wait	for	serial	display	startup
		mySerialPort.print("v");							//	Reset	the	serial	display
		mySerialPort.print("z");							//	Brightness
		mySerialPort.write(0x40);						//	3/4	intensity
		mySerialPort.print("w");							//	Decimal	point	control
		mySerialPort.write(0x10);						//	Turn	on	colon	in	serial	display
}

int	DownCntr;			//	Countdown	(1/10	seconds)
int	Go	=	0;					//	Stopped

void	loop()	{
		if	(!digitalRead(GoButt)	||	!digitalRead(ArmButt))	{
				Go	=	0;			//	Abort	the	countdown
				tone(BuzzPin,	440,	1500);
				delay(1500);
		}

		if	(Go	==	0)	{
				WaitARM();
				WaitGO();
		}
		ShowTimer();
		if	(DownCntr	>	50)	{
				if	(DownCntr	%	10	==	0)tone(BuzzPin,	1000,	50);	//	One	beep/sec
		}
		else	if	(DownCntr	%	2	==	0)tone(BuzzPin,	1000,	50);	//	Beep	faster

		if	(DownCntr	==	0)	{
				tone(BuzzPin,	440,	FuseTIME);		//	Launch	tone
				digitalWrite(Fuse,	HIGH);						//	Close	the	fuse	circuit
				delay(FuseTIME);
				digitalWrite(Fuse,	LOW);							//	Open	the	fuse	circuit
				Go	=	0;
		}
		while	(millis()	%	100);										//	Wait	50	ms
		delay(50);
		DownCntr--;
}

void	WaitGO()	{
		ShowTimer();
		while	(digitalRead(GoButt));
		Go	=	1;
		delay(20);
		while	(!digitalRead(GoButt));	//	Debounce	Launch	button
}

void	ReadTimer()	{
		DownCntr	=	map(analogRead(SetPot),	0,	1023,	5,	60);
		DownCntr	*=	10;
}

void	ShowTimer()	{
		String	seconds	=	String	(DownCntr,	DEC);
		while	(seconds.length()	<	3)seconds	=	"0"	+	seconds;	//	Format	to
																																																							//	3	numbers
		mySerialPort.print(seconds);	//	Write	to	serial	display
		mySerialPort.print("	");					//	Last	digit	off
}

void	WaitARM()	{
		while	(digitalRead(ArmButt)	==	1)	{
				ReadTimer();
				delay(50);
				ReadTimer();
				ShowTimer();
				delay(150);
		}

		Go	=	0;
		ShowTimer();
		tone(BuzzPin,	2000,	150);
		delay(200);
		tone(BuzzPin,	2000,	150);
		delay(200);
		tone(BuzzPin,	2000,	150);

		delay(20);
		while	(!digitalRead(ArmButt));	//	Debounce	Arm	button
}

PART	6
SECURITY

PROJECT	18:	INTRUDER	SENSOR
IN	THIS	PROJECT,	WE’LL	USE	AN	ULTRASONIC	SENSOR	TO	DETECT	AN
INTRUDER.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Four-pin	HC-SR04	ultrasonic	sensor

•	Servomotor

•	Red	LED

•	Green	LED

•	2	220-ohm	resistors

We’ll	connect	the	intruder	sensor	to	a	servo	and	some	LEDs	so	that	when	someone	comes
within	a	certain	distance,	a	green	LED	turns	off,	a	red	LED	turns	on,	and	the	servomotor	moves
(see	Figure	18-1).

FIGURE	18-1:
The	LEDs	alert	you	to	an	intruder.

HOW	IT	WORKS
This	project	is	versatile	and	can	be	used	and	adapted	in	various	ways.	Because	the	ultrasonic	sensor
can	define	distance,	you	could,	for	example,	use	it	to	define	an	area	and	trigger	an	alarm	when	that
perimeter	is	breached.	The	sensor	works	similarly	to	a	radar:	it	sends	out	an	ultrasonic	signal,	or
ping.	When	this	signal	hits	an	object,	it	bounces	back	like	an	echo,	and	the	time	between	the	ping
and	the	echo	is	used	to	calculate	distance.	The	Arduino	can	use	this	calculation	to	trigger	an	event,
depending	on	the	value	received.

In	this	project,	when	the	sensor	detects	an	intruder	within	a	predefined	vicinity,	the	red	LED
will	light	and	the	servo	arm	will	move.	You	can	adapt	this	project	to	trigger	a	different	event	when
the	intruder	is	detected,	like	pressing	a	security	system	button	or	locking	a	door.	For	a	friendlier
scenario,	you	could	set	the	distance	really	close	so	that	when	you	wave	your	hand	in	front	of	the
sensor,	the	servo	presses	a	button	to	release	a	treat,	like	candy.

NOTE
To	use	the	same	ultrasonic	sensor	shown	in	these	figures,	see	“Retailer	List”	on	page	240	or	search	online	for
HC-SR04	ultrasonic	module.

THE	BUILD

1.	 Insert	the	ultrasonic	sensor	into	the	breadboard.	The	sensor	we’re	using	in	this	project	has
four	pins,	as	shown	in	Figure	18-2.	Connect	the	sensor’s	GND	to	the	Arduino	GND	rail,
VCC	to	Arduino	+5V,	Trig	to	Arduino	pin	12,	and	Echo	to	Arduino	pin	13.

ULTRASONIC	SENSOR ARDUINO

GND GND

VCC +5V

Trig Pin	12

Echo Pin	13

1.	 FIGURE	18-2:
The	HC-SR04	ultrasonic	sensor

2.	 Connect	the	servo’s	brown	(ground)	wire	to	the	Arduino	GND	rail,	its	red	(power)	wire	to
the	Arduino	+5V	rail,	and	its	yellow	signal	(control)	wire	to	Arduino	pin	9.

SERVO ARDUINO

Red	wire +5V

Brown	wire GND

Yellow	wire Pin	9

3.	 Insert	the	red	and	green	LEDs	into	the	breadboard	with	the	shorter,	negative	legs	in	the
Arduino	GND	rail.	Add	a	220-ohm	resistor	to	each	of	the	positive	legs,	and	connect	the	red
LED	to	Arduino	pin	2	and	the	green	LED	to	pin	3	via	the	resistors.

LEDS ARDUINO

Negative	legs GND

Positive	leg	(red) Pin	2	via	220-ohm	resistor

Positive	leg	(green) Pin	3	via	220-ohm	resistor

4.	 Connect	the	power	rails	on	the	breadboard	to	Arduino	+5V	and	GND.	The	final
configuration	is	shown	in	Figure	18-3.

4.	 FIGURE	18-3:
The	complete	intruder	sensor	project

5.	 Check	that	your	setup	matches	that	of	Figure	18-4	and	then	upload	the	code	in	“The	Sketch”
on	page	161.

5.	 FIGURE	18-4:
The	circuit	diagram	for	the	intruder	sensor

THE	SKETCH
When	an	object	is	within	the	trigger	distance,	the	red	LED	will	light	and	the	servo	will	move	45
degrees.	You	can	change	the	distance	of	the	sensor	field	in	the	following	line	of	the	sketch:

if	(distance	<=	15)

In	this	example,	if	something	is	sensed	within	a	distance	of	15	centimeters,	the	next	block	of
code	will	run.

The	Trig	pin	on	the	sensor	is	connected	to	Arduino	pin	12	and	emits	an	ultrasonic	signal	or
ping.	When	the	signal	reaches	an	object,	it	bounces	back	to	the	module,	and	this	echo	is	sent	to
Arduino	pin	13.	The	time	difference	between	the	two	signals	gives	us	our	distance	reading.	If	the
distance	is	more	than	our	set	minimum,	the	green	LED	stays	on;	if	not,	the	red	LED	lights	and
the	servo	moves.

/*	NewPing	Library	created	by	Tim	Eckel	teckel@leethost.com.
			Copyright	2012	License:	GNU	GPL	v3

			http://www.gnu.org/licenses/gpl-3.0.html
*/

#include	<NewPing.h>	//	Call	NewPing	library
#include	<Servo.h>			//	Call	Servo	library
#define	trigPin	12			//	Trig	pin	connected	to	Arduino	12
#define	echoPin	13			//	Echo	pin	connected	to	Arduino	13
#define	MAX_DISTANCE	500
NewPing	sonar(trigPin,	echoPin,	MAX_DISTANCE);	//	Library	setting
int	greenLed	=	3,	redLed	=	2;	//	Set	green	LED	to	pin	3,	red	to	pin	2
int	pos	=	20;
Servo	myservo;

void	setup()	{
		Serial.begin	(115200);
		pinMode(trigPin,	OUTPUT);
		pinMode(echoPin,	INPUT);
		pinMode(greenLed,	OUTPUT);
		pinMode(redLed,	OUTPUT);
		myservo.attach(9);	//	Servo	attached	to	pin	9
}

void	loop()	{
		int	duration,	distance,	pos	=	0,	i;
		digitalWrite(trigPin,	LOW);
		delayMicroseconds(2);
		digitalWrite(trigPin,	HIGH);	//	Trig	pin	sends	a	ping
		delayMicroseconds(10);
		digitalWrite(trigPin,	LOW);
		duration	=	pulseIn(echoPin,	HIGH);	//	Echo	receives	the	ping
		distance	=	(duration	/	2)	/	29.1;
		Serial.print(distance);
		Serial.println("	cm");
		//	If	sensor	detects	object	within	15	cm
		if	(distance	<=	15)	{
				digitalWrite(greenLed,	LOW);	//	Turn	off	green	LED
				digitalWrite(redLed,	HIGH);		//	Turn	on	red	LED
				myservo.write(180);										//	Move	servo	arm	180	degrees
				delay(450);
				digitalWrite(redLed,	LOW);			//	Light	the	red	LED
				myservo.write(90);
				delay(450);
				digitalWrite(redLed,	HIGH);
				myservo.write(0);
				delay(450);
				digitalWrite(redLed,	LOW);
				myservo.write(90);
		}
		//	Otherwise
		else	{
				digitalWrite(redLed,	LOW);				//	Turn	off	red	LED
				digitalWrite(greenLed,	HIGH);	//	Turn	on	green	LED
				myservo.write(90);
		}
		delay(450);
}

PROJECT	19:	LASER	TRIP	WIRE	ALARM
IN	THIS	PROJECT,	YOU’LL	CREATE	A	SIMPLE	LASER	TRIP	WIRE	ALARM.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Photoresistor

•	Piezo	buzzer

•	Green	LED

•	10k-ohm	resistor

•	Laser	pen

You’ve	probably	seen	a	movie	where	a	valuable	item	is	protected	by	a	grid	of	laser	beams.	The
beams	look	cool	and	seem	pretty	high-tech,	but	the	principles	behind	them	are	actually	very
simple.

HOW	IT	WORKS
When	the	laser	pen	shines	on	the	photoresistor,	the	green	LED	will	light	up	to	signify	that	the
circuit	is	ready.	When	the	laser	beam	is	broken,	the	LED	turns	off	and	the	buzzer	sounds.

As	we	know	from	Projects	13	and	18,	photoresistors	produce	variable	resistance	depending	on
the	amount	of	light	falling	on	their	sensor.	When	the	photoresistor	does	not	detect	light	from	the
laser,	it	will	drop	its	resistance	and	trigger	the	Arduino	to	send	voltage	to	the	pin	controlling	the
buzzer.

Laser	beams	that	are	visible	in	daylight	or	even	in	the	dark	are	very	powerful	and	can	be
extremely	dangerous.	In	this	project	we’ll	use	a	low-powered	laser	pen	instead	(see	Figure	19-1).

FIGURE	19-1:
Laser	pens	can	still	be	dangerous	and	should	never	be	directed	toward	anybody’s	eyes!

THE	BUILD

1.	 Insert	your	photoresistor	into	the	breadboard.	Connect	one	leg	to	the	+5V	rail	using	a	jumper
wire.	Connect	a	10k-ohm	resistor	to	the	other	leg,	and	connect	the	other	side	of	this	resistor
to	Arduino	A0	and	GND	on	the	breadboard.

PHOTORESISTOR ARDUINO

Leg	1 +5V

Leg	2 A0	via	10k-ohm	resistor	and	GND

2.	 Connect	the	red	(positive)	wire	of	the	piezo	buzzer	directly	to	Arduino	pin	11	on	the	Arduino
and	the	black	(GND)	wire	to	GND	on	the	breadboard.

PIEZO ARDUINO

Black	wire GND

Red	wire Pin	11

3.	 Insert	the	green	LED’s	long	leg	into	Arduino	pin	13	and	the	short	leg	into	GND.

4.	 Connect	the	power	rails	to	the	breadboard.

5.	 Before	you	upload	the	code,	you	need	to	check	the	photo-resistor’s	value	in	ambient	light.
Run	the	following	small	program	with	the	photoresistor	set	up	as	instructed.

void	setup()	{
		pinMode(4,	OUTPUT);
		Serial.begin(9600);

}

void	loop()	{
		digitalWrite(4,	HIGH);
		Serial.println(analogRead(0));
}

6.	 Open	the	Serial	Monitor	in	the	Arduino	IDE.	It	will	show	the	value	being	read	from	the	light
resistor—in	Figure	19-2,	it’s	964—in	normal	lighting	conditions.	Take	note	of	your	number,
which	will	be	different	depending	on	your	lighting	conditions.

6.	 FIGURE	19-2:
Reading	values	from	the	photoresistor

Now	shine	the	laser	on	the	resistor’s	cell,	and	also	note	this	number;	my	reading	is	620.
This	might	seem	counterintuitive,	as	you	would	expect	more	light	to	provide	a	higher
number,	but	the	figure	is	actually	translating	the	resistance—more	light,	less	resistance.	Your
values	will	differ	from	those	shown	here,	so	make	sure	to	record	your	two	readings.

7.	 Check	that	your	setup	matches	that	of	Figure	19-3	and	then	upload	the	code	in	“The	Sketch”
on	page	168.

7.	 FIGURE	19-3:
The	circuit	diagram	for	the	laser	trip	wire	alarm

THE	SKETCH
The	sketch	first	sets	Arduino	pin	11	as	an	OUTPUT	for	the	piezo	buzzer	and	pin	13	as	an	OUTPUT	for
the	LED.	The	photoresistor	is	connected	to	Arduino	pin	A0.	If	the	analog	reading	from	A0	is
more	than	850	(meaning	that	there	is	less	light	and	the	laser	beam	has	been	broken),	the	buzzer
will	be	set	to	HIGH	and	turn	on	and	the	LED	will	turn	off.	Remember	to	change	the	resistance
value	depending	on	your	calibration	on	this	line:

if	(analogRead(0)	>	850)	{

As	noted	earlier,	when	the	laser	is	shining	on	the	resistor	it	reads	about	620,	so	in	the	sketch
I’ve	set	the	buzzer	to	sound	only	if	the	value	is	more	than	850.	This	value	is	between	our	laser
value	and	our	nonlaser	value,	so	we	know	the	laser	beam	to	the	resistor	has	been	broken	if	the
value	reaches	850.

int	buzzPin	=	11;	//	Pin	connected	to	the	piezo
int	LED	=	13;					//	Pin	connected	to	the	LED

void	setup()	{
		pinMode(buzzPin,	OUTPUT);	//	Set	pin	as	output
		pinMode(LED,	OUTPUT);					//	Set	pin	as	output
}

void	loop()	{
		if	(analogRead(0)	>	850)	{	//	Set	this	value	depending	on	the
																													//	values	of	your	photoresistor
				digitalWrite(buzzPin,	HIGH);	//	If	value	is	above	850,
																																	//	turn	the	piezo	ON
				digitalWrite(LED,	LOW);						//	If	value	is	above	850,
																																	//	turn	the	LED	OFF
				delay(1000);	//	Wait	for	1	second
				digitalWrite(buzzPin,	LOW);
				digitalWrite(LED,	LOW);
		}	else	{
				digitalWrite(buzzPin,	LOW);	//	If	value	is	850	or	below
																																//	(light	shining	on	photoresistor),
																																//	the	piezo	is	off
				digitalWrite(LED,	HIGH);				//	If	value	is	850	or	below
																																//	(light	shining	on	photoresistor),
																																//	the	LED	is	on
		}
}

PROJECT	20:	SENTRY	GUN
A	SENTRY	GUN	IS	AN	UNMANNED	WEAPON	CAPABLE	OF
AUTONOMOUSLY	SENSING	AND	FIRING	UPON	ENEMY	TARGETS	USING
ULTRASONIC	DETECTION.	IN	THIS	PROJECT,	WE’LL	CREATE	A
MINIATURE	VERSION	OF	THIS	GUN.

PARTS	REQUIRED
•	Arduino	board

•	Mini	breadboard

•	Jumper	wires

•	Male-to-male	jumper	wires

•	Four-pin	HC-SR04	ultrasonic	sensor

•	WLToys	RC	V959	missile	launcher

•	Tower	Pro	SG90	9g	servomotor

LIBRARIES	REQUIRED
•	Servo

•	NewPing

HOW	IT	WORKS

We’ll	attach	the	toy	missile	launcher	and	the	ultrasonic	sensor	to	a	servo	arm	(see	Figure	20-1)	so
that	the	servo	sweeps	the	gun	and	sensor	back	and	forth	across	180	degrees,	giving	the	ultrasonic
sensor	a	wide	range	of	detection.	When	an	enemy	is	detected,	the	Arduino	triggers	the	sentry	gun
and	discharges	the	missiles.	For	more	on	the	ultrasonic	sensor,	see	Project	18.

FIGURE	20-1:
Attaching	the	toy	gun	and	ultrasonic	sensor	to	the	servo	arm	gives	them	a	wide	range	of	detection	and	motion.

The	key	component	for	this	project	is	the	WLToys	RC	V959	missile	launcher,	also	known	as
the	Walkera	Part	RC	V959-19	missile	bullet	launcher,	intended	for	radio-controlled	helicopters
(Figure	20-2).

FIGURE	20-2:
The	Walkera	Part	RC	V959-19	missile	bullet	launcher

This	cool	part	is	really	cheap	(around	$6	–10)	and	is	widely	available	online.	Inside	this
launcher	is	a	mini	servo	that	revolves	to	set	off	the	missiles.	The	wires	that	control	this	servo	are
white	(GND)	and	yellow	(+5V).	You’ll	also	find	black	and	red	wires,	which	are	for	a	single	shot,
but	we’ll	use	only	yellow	and	white	for	a	continuous	Gatling	gun	effect.

THE	BUILD

1.	 First	we’ll	prepare	the	toy	missile	launcher.	Carefully	remove	the	four	wires	from	the	small
plastic	socket;	they	should	come	out	fairly	easily.	You	can	use	a	male-to-male	jumper	wire	to
push	down	on	the	plastic	clip	to	help.

2.	 The	core	of	the	wire	is	stranded	and	quite	flimsy,	so	strip	the	end	of	the	yellow	and	white
wires	and	solder	them	to	separate	solid-core	wires	that	can	be	inserted	into	the	Arduino,	as
shown	in	Figure	20-3.	Trim	the	black	and	red	wires	or	tape	them	out	of	the	way.

2.	 FIGURE	20-3:
Stripping	and	soldering	the	missile	launcher	wires

3.	 Glue	the	servo	motor’s	arm	to	the	base	of	the	missile	launcher,	as	shown	in	Figure	20-4.

3.	 FIGURE	20-4:
Gluing	the	servo	motor’s	arm

4.	 Attach	the	ultrasonic	sensor	to	the	top	of	the	launcher,	as	shown	in	Figure	20-5.	You	can	use	a
hot-glue	gun	for	a	solid	connection	or	just	tape	it	for	now	if	you	might	want	to	alter	it	later.

4.	 FIGURE	20-5:
Attaching	the	ultrasonic	sensor

5.	 Use	the	jumper	wires	to	connect	the	ultrasonic	sensor	to	the	Arduino:	connect	Trig	directly
to	Arduino	pin	13,	and	Echo	directly	to	Arduino	pin	12.	We	will	use	a	mini	breadboard	to
assist	with	multiple	power	connections	to	Arduino	+5V	and	GND.

ULTRASONIC	SENSOR ARDUINO

VCC +5V

Trig Pin	13

Echo Pin	12

GND GND

6.	 Connect	the	servomotor’s	brown	wire	to	Arduino	GND	and	the	red	wire	to	+5V	via	the	mini
breadboard,	and	the	yellow/white	wire	directly	to	Arduino	pin	9.

SERVO ARDUINO

Brown	wire GND

Red	wire +5V

Yellow	wire Pin	9

7.	 Connect	the	launcher’s	white	wire	to	the	GND	rail	of	the	mini	breadboard,	and	the	yellow
wire	directly	to	Arduino	pin	3.

LAUNCHER ARDUINO

White	wire GND

Yellow	wire Pin	3

8.	 Your	sentry	gun	should	look	like	Figure	20-6.	Insert	the	missiles	into	the	launcher.

8.	 FIGURE	20-6:
Your	sentry	gun	is	ready	to	fire!

9.	 Confirm	that	your	completed	setup	matches	that	of	Figure	20-7.	Upload	the	code	in	“The
Sketch”	on	page	176.

9.	 FIGURE	20-7:
The	circuit	diagram	for	the	sentry	gun

THE	SKETCH
The	sketch	first	calls	the	NewPing	and	Servo	libraries	to	access	the	functions	you’ll	need	to
control	the	servomotor	and	ultrasonic	sensor,	respectively.	(Make	sure	the	NewPing	library	is
downloaded	from	http://nostarch.com/arduinohandbook/	and	saved	in	your	Arduino	folder.)	The
servomotor	sweeps	back	one	way	and	then	forth	the	other,	moving	the	ultrasonic	sensor	180
degrees.	The	sensor	sends	out	an	ultrasonic	signal,	or	ping,	and	when	this	ping	reaches	an	object,	it
echoes	back	to	give	a	time	value.	The	Arduino	converts	this	value	into	the	distance	between	the
sensor	and	the	object.	When	the	distance	to	the	object	is	fewer	than	15	centimeters,	the	servo	stops
and	power	is	sent	to	the	launcher	to	fire	the	bullets	at	the	object.	You	can	change	this	trigger
distance	(given	in	centimeters)	at	➊.

			#include	<NewPing.h>	//	Call	NewPing	library
			#include	<Servo.h>			//	Call	Servo	library
			#define	trigPin	12			//	Pin	connected	to	ultrasonic	sensor	Trig
			#define	echoPin	13			//	Pin	connected	the	ultrasonic	sensor	Echo
			#define	MAX_DISTANCE	500

http://nostarch.com/arduinohandbook/

			NewPing	sonar(trigPin,	echoPin,	MAX_DISTANCE);

			int	blaster	=	3;	//	Pin	connected	to	the	blaster

			int	angle	=	0;	//	Set	servo	position	in	degrees

			Servo	servo;

			void	setup()	{
					Serial.begin	(115200);
					pinMode(trigPin,	OUTPUT);
					pinMode(echoPin,	INPUT);
					pinMode(blaster,	OUTPUT);
					servo.attach(9);	//	Pin	connected	to	servo
			}

			void	loop()	{
					int	duration,	distance,	pos	=	0,	i;
					digitalWrite(trigPin,	LOW);
					delayMicroseconds(2);
					digitalWrite(trigPin,	HIGH);	//	trigPin	sends	a	ping
					delayMicroseconds(10);
					digitalWrite(trigPin,	LOW);
					duration	=	pulseIn(echoPin,	HIGH);	//	echoPin	receives	the	ping
					distance	=	(duration	/	2)	/	29.1;
					Serial.print(distance);
					Serial.println("	cm");

➊			if	(distance	<=	15)	{	//	If	distance	is	fewer	than	15	cm
							digitalWrite(blaster,	HIGH);	//	Blaster	will	fire
							servo.write(90);
					}
					else	{
							digitalWrite(blaster,	LOW);	//	Otherwise,	blaster	won't	activate
							for	(angle	=	0;	angle	<	180;	angle++)	{	//	Sweep	the	servo
									servo.write(angle);
									delay(15);
							}
							for	(angle	=	180;	angle	>	0;	angle--)	{
									servo.write(angle);
							}
							delay(450);
					}
			}

PROJECT	21:	MOTION	SENSOR	ALARM
IN	THIS	PROJECT,	WE’LL	BUILD	A	MOTION-SENSING	ALARM	USING	A
PASSIVE	INFRARED	(PIR)	SENSOR.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	HC	SR501	PIR	sensor

•	LED

•	Piezo	buzzer

You	can	use	this	alarm	to	trigger	a	variety	of	outputs,	such	as	lights,	motors,	or	even	a
“welcome	home”	message	when	you	approach	your	front	door.

HOW	IT	WORKS
This	project	is	based	on	the	HC	SR501	PIR	sensor,	which	is	widely	available	online	for	a	few
dollars.	We’re	going	to	set	it	up	so	that	when	someone	passes	in	front	of	the	PIR	sensor,	the	LED
will	light	up	and	the	piezo	buzzer	will	sound	(see	Figure	21-1),	but	you	can	adapt	it	for	various
other	output.

FIGURE	21-1:
Any	piezo	buzzer	will	work	for	this	project,	but	remember	that	most	have	polarity,	so	the	red	wire	must	be	connected	to	+5V
and	the	black	wire	to	GND.

Other	similar	PIR	sensors	will	work	with	this	code,	but	it’s	important	to	check	the	pin	layout
of	your	sensor	on	the	data	sheet,	as	this	can	vary.	All	sensors	should	have	+5V,	GND,	and	output
pins.	On	this	model,	the	pins	are	not	clearly	marked,	but	if	you	simply	remove	the	outer	lens	(it’s
clipped	in	place	and	can	be	unclipped	easily),	you	can	identify	the	pins	underneath,	as	shown	in
Figure	21-2.

FIGURE	21-2:
A	PIR	sensor	with	the	lens	removed

The	two	orange	potentiometers	on	the	sensor	indicate	that	there	are	two	adjustable	settings.
With	the	sensor	upright,	as	shown	in	Figure	21-3,	the	left	potentiometer	controls	how	long	the
output	is	set	to	HIGH	when	something	is	detected,	and	can	be	set	between	5	and	200	seconds.	When
we	attach	an	LED	to	the	output,	the	LED	will	be	lit	for	between	5	and	200	seconds	depending	on
the	setting.	The	right	potentiometer	adjusts	the	detection	range	from	0	to	7	meters.

FIGURE	21-3:
PIR	sensor	potentiometers.	The	left	controls	how	long	the	output	is	set	to	HIGH	(5–200	seconds),	while	the	right	controls
the	range	(0–7	meters).

The	sensor	works	by	detecting	infrared	radiation,	which	is	emitted	from	objects	that	generate
heat.	Crystalline	material	within	the	sensor	detects	the	infrared	radiation,	and	when	it	detects	a	set
level,	it	triggers	the	output	signal	of	the	sensor.	The	Arduino	reads	this	output	as	voltage,	so	we
can	use	this	as	a	simple	switch	to	turn	something	on—in	this	instance,	an	LED.

We	are	setting	up	the	sensor	so	that	an	alarm	sounds	when	the	sensor	is	triggered,	but	there
are	other	ways	that	you	can	customize	the	project.	For	example,	you	could	scare	your	friends	by
attaching	a	servo	and	setting	it	up	to	release	a	rubber	band	when	they	walk	by.

THE	BUILD

1.	 Connect	the	PIR	sensor’s	+5V	and	GND	wires	to	the	+5V	and	GND	rails	on	the	breadboard,
and	connect	these	rails	to	the	Arduino.	Connect	the	PIR	sensor’s	output	wire	to	Arduino	pin
2.	(See	Figure	21-4.)

PIR	SENSOR ARDUINO

+5V +5V

GND GND

Output Pin	2

1.	 FIGURE	21-4:
PIR	sensor	connected	to	wires

2.	 Insert	an	LED	into	the	breadboard	and	connect	the	long,	positive	leg	to	Arduino	pin	13,	and
the	short,	negative	leg	to	GND.	You	don’t	need	a	resistor	for	the	LED	in	this	project.

LED ARDUINO

Positive	leg Pin	13

Negative	leg GND

3.	 Connect	the	piezo	buzzer	by	attaching	the	red	wire	to	Arduino	pin	10	and	the	black	wire	to
GND.

PIEZO ARDUINO

Red	wire Pin	10

Black	wire GND

4.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	21-5,	and	then	upload	the
code	in	“The	Sketch”	on	page	183.

4.	 FIGURE	21-5:
The	circuit	diagram	for	the	motion	sensor	alarm

THE	SKETCH
The	sketch	works	by	setting	Arduino	pin	13	as	output	for	the	LED,	pin	2	as	input	for	the	PIR
sensor,	and	pin	10	as	output	for	the	piezo	buzzer.	When	the	PIR	sensor	is	triggered,	a	HIGH	signal	is
sent	to	the	Arduino,	which	will	in	turn	light	the	LED	and	play	a	tone	on	the	piezo	buzzer.

int	ledPin	=	13;											//	Pin	connected	to	LED
int	inputPin	=	2;										//	Pin	connected	to	PIR	sensor
int	pirState	=	LOW;								//	Start	PIR	state	LOW	with	no	motion
int	val	=	0;															//	Variable	for	reading	the	pin	status
int	pinSpeaker	=	10;							//	Pin	connected	to	piezo

void	setup()	{
		pinMode(ledPin,	OUTPUT);		//	Set	LED	as	output
		pinMode(inputPin,	INPUT);	//	Set	sensor	as	input
		pinMode(pinSpeaker,	OUTPUT);
		Serial.begin(9600);
}

void	loop()	{

		val	=	digitalRead(inputPin);			//	Read	PIR	input	value
		if	(val	==	HIGH)	{													//	Check	if	input	is	HIGH
				digitalWrite(ledPin,	HIGH);		//	If	it	is,	turn	ON	LED
				playTone(300,	160);
				delay(150);
				if	(pirState	==	LOW)	{
						//	Print	to	the	Serial	Monitor	if	motion	detected
						Serial.println("Motion	detected!");

						pirState	=	HIGH;
				}
		}	else	{
						digitalWrite(ledPin,	LOW);	//	If	input	is	not	HIGH,
																																	//	turn	OFF	LED
						playTone(0,	0);
						delay(300);
						if	(pirState	==	HIGH)	{
						Serial.println("Motion	ended!");
						pirState	=	LOW;
				}
		}
}

void	playTone(long	duration,	int	freq)	{	//	Duration	in	ms,
																																									//	frequency	in	Hz
				duration	*=	1000;
				int	period	=	(1.0	/	freq)	*	1000000;
				long	elapsed_time	=	0;
				while	(elapsed_time	<	duration)	{
						digitalWrite(pinSpeaker,	HIGH);
						delayMicroseconds(period	/	2);
						digitalWrite(pinSpeaker,	LOW);
						delayMicroseconds(period	/	2);
						elapsed_time	+=	(period);
				}
}

PROJECT	22:	KEYPAD	ENTRY	SYSTEM
IT’S	TIME	TO	INTRODUCE	A	KEYPAD	TO	YOUR	ARDUINO	BY	BUILDING	A
KEYPAD	ENTRY	SYSTEM.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Tower	Pro	SG90	9g	servomotor

•	Green	LED

•	Red	LED

•	4×4	membrane	keypad

•	2	220-ohm	resistors

LIBRARIES	REQUIRED
•	Keypad

•	Servo

•	Password

This	project	uses	a	4×4	membrane	keypad	with	a	ribbon	of	eight	wires	running	from	the
bottom,	connected	to	a	servo	that	sweeps	to	open	a	lock.

HOW	IT	WORKS
A	keypad	is	basically	a	series	of	buttons	that	output	a	number	or	character	depending	on	which
button	is	pressed.	With	the	keypad	face	up,	the	wires	are	numbered	1–8	from	left	to	right.	The
first	four	wires	correspond	to	the	rows,	and	the	latter	four	to	the	columns.

You’ll	need	to	download	the	library	for	the	keypad	from	the
http://nostarch.com/arduinohandbook/	and	save	it	in	your	IDE’s	Arduino	libraries	folder.

We’ll	connect	this	keypad	to	a	servo	and	some	LEDs	to	create	a	lock	system	like	the	secret
knock	lock	in	Project	9.	To	use	the	lock,	enter	your	code	and	press	the	asterisk	(*)	to	confirm.	If
the	code	matches	the	password	defined	in	the	sketch,	the	green	LED	will	flash	and	the	servo	will
move	90	degrees.	If	the	code	is	incorrect,	the	red	LED	will	flash.	Use	the	hash	key	(#)	to	reset
between	code	inputs.	You	could	swap	this	servo	for	a	more	substantial	one	capable	of	unlocking	a
heavier	deadbolt	on	a	door,	or	locking	and	unlocking	a	box	from	the	inside	with	the	keypad	and
LEDs	mounted	externally.

TESTING	THE	KEYPAD
First	we’ll	test	the	keypad	with	the	following	code:

#include	<Keypad.h>

const	byte	ROWS	=	4;
const	byte	COLS	=	4;
char	keys[ROWS][COLS]	=	{
		{'1','2','3','A'},
		{'4','5','6','B'},
		{'7','8','9','C'},
		{'*','0','#','D'}
};
byte	rowPins[ROWS]	=	{2,3,4,5};
byte	colPins[COLS]	=	{6,7,8,9};

Keypad	keypad	=	Keypad(makeKeymap(keys),	rowPins,	colPins,
																							ROWS,	COLS);

void	setup()	{
		Serial.begin(9600);
}

void	loop()	{
		char	key	=	keypad.getKey();
		if	(key	!=	NO_KEY){
				Serial.println(key);
		}
}

Upload	this	code	and	then	open	the	Serial	Monitor	in	your	IDE	(Figure	22-1).

http://nostarch.com/arduinohandbook/

FIGURE	22-1:
Testing	the	keypad

With	the	keypad	face	up,	connect	the	wires	in	sequence	from	left	to	right	to	Arduino	digital
pins	9–2.	Once	you	have	uploaded	the	code,	press	a	few	keys.	As	each	key	is	pressed,	the
corresponding	character	should	appear	on	a	separate	line	in	the	Arduino	IDE’s	serial	console.

THE	BUILD

1.	 Connect	the	pins	of	the	keypad	directly	to	the	Arduino	pins	as	follows.	The	keypad	pins	are
numbered	as	shown	in	Figure	22-2.

KEYPAD ARDUINO

Pin	1 Pin	9

Pin	2 Pin	8

Pin	3 Pin	7

Pin	4 Pin	6

Pin	5 Pin	5

Pin	6 Pin	4

Pin	7 Pin	3

Pin	8 Pin	2

1.	 FIGURE	22-2:
Keypad	pins	1–8

2.	 Place	a	green	LED	and	a	red	LED	into	the	breadboard	with	the	shorter,	negative	legs
connected	to	the	Arduino	GND	rail.	Add	a	220-ohm	resistor	to	each	longer,	positive	leg.
Connect	the	resistor	that’s	attached	to	the	green	LED	to	Arduino	pin	11,	and	the	resistor
that’s	attached	to	the	red	LED	to	Arduino	pin	12.

LEDS ARDUINO

Positive	legs Pins	11	and	12	via	220-ohm	resistors

Negative	legs GND

3.	 Now	attach	the	servo	(see	Figure	22-3).	Connect	the	brown	wire	to	the	GND	rail,	the	red
wire	to	the	+5V	rail,	and	the	yellow/white	wire	directly	to	pin	13	on	the	Arduino.

SERVO ARDUINO

Brown	wire GND

Red	wire +5V

Yellow	wire Pin	13

3.	 FIGURE	22-3:
Attaching	the	servo

4.	 Make	sure	your	setup	matches	that	of	Figure	22-4,	and	upload	the	code	in	“The	Sketch”	on
page	192.

4.	 FIGURE	22-4:
Circuit	diagram	for	the	keypad	entry	system

THE	SKETCH
First,	the	sketch	calls	on	the	Keypad,	Servo,	and	Password	libraries.	The	Servo	library	is	included
in	the	IDE,	but	you’ll	have	to	download	the	Keypad	and	Password	libraries
(http://nostarch.com/arduinohandbook/).	We	then	set	the	eight	pins	that	will	determine	the	input
from	the	keypad,	and	set	Arduino	pins	11	and	12	to	control	the	LEDs	and	pin	13	to	control	the
servomotor.	The	Arduino	waits	for	your	code	input	from	the	keypad	and	for	you	to	confirm	your
input	with	*.	Once	you’ve	pressed	the	asterisk	key,	the	sketch	will	check	the	entry	against	the
password	in	the	code.	If	the	entry	doesn’t	match	the	password,	the	red	LED	will	be	set	to	HIGH	and
light;	if	the	entry	does	match	the	password,	the	green	LED	will	be	set	to	HIGH	and	light,	and	the
servomotor	will	turn.	Pressing	#	will	reset	the	sketch	so	it’s	ready	for	another	entry.

To	alter	the	password,	change	the	number	in	quotation	marks	in	the	following	line.

Password	password	=	Password("2468");

The	default	password	in	the	sketch	is	2468.

http://nostarch.com/arduinohandbook/

/*	Keypad	Library	for	Arduino
			Authors:	Mark	Stanley,	Alexander	Brevig
			http://playground.arduino.cc/Main/KeypadTutorial
*/

#include	<Password.h>
#include	<Keypad.h>
#include	<Servo.h>

Servo	myservo;
Password	password	=	Password("2468");	//	Set	password

const	byte	ROWS	=	4;	//	Set	four	rows
const	byte	COLS	=	4;	//	Set	four	columns

char	keys[ROWS][COLS]	=	{	//	Define	the	keymap
		{'1','2','3','A'},
		{'4','5','6','B'},
		{'7','8','9','C'},
		{'*','0','#','D'}
};
byte	rowPins[ROWS]	=	{	9,8,7,6	};		//	Pins	connected	to	keypad
																																			//	ROW0,	ROW1,	ROW2	and	ROW3
byte	colPins[COLS]	=	{	5,4,3,2,	};	//	Pins	connected	to	keypad
																																			//	COL0,	COL1	and	COL2
//	Create	the	keypad
Keypad	keypad	=	Keypad(makeKeymap(keys),	rowPins,	colPins,
																							ROWS,	COLS);
void	setup()	{
		Serial.begin(9600);
		delay(200);
		pinMode(11,	OUTPUT);	//	Set	green	LED	as	output
		pinMode(12,	OUTPUT);	//	Set	red	LED	as	output
		myservo.attach(13);		//	Pin	connected	to	servo
		keypad.addEventListener(keypadEvent);	//	Add	an	event	listener	to
																																								//	detect	keypresses
}

void	loop()	{
		keypad.getKey();
		myservo.write(0);
}

void	keypadEvent(KeypadEvent	eKey)	{
		switch	(keypad.getState())	{
				case	PRESSED:
				Serial.print("Pressed:	");
				Serial.println(eKey);
				switch	(eKey)	{
						case	'*':	checkPassword();	break;
						case	'#':	password.reset();	break;
						default:	password.append(eKey);
				}
		}
}

void	checkPassword()	{
		if	(password.evaluate()){
				Serial.println("Success");	//	If	the	password	is	correct...
				myservo.write(90);									//	Move	servo	arm	90	degrees
				digitalWrite(11,	HIGH);				//	Turn	on	green	LED
				delay(500);																//	Wait	5	seconds
				digitalWrite(11,	LOW);					//	Turn	off	green	LED

		}	else	{
				Serial.println("Wrong");			//	If	the	password	is	incorrect...
				myservo.write(0);
				digitalWrite(12,	HIGH);				//	Turn	on	red	LED
				delay(500);																//	Wait	5	seconds
				digitalWrite(12,	LOW);					//	Turn	off	red	LED

		}
}

PROJECT	23:	WIRELESS	ID	CARD	ENTRY	SYSTEM
IN	THIS	PROJECT,	WE’LL	USE	A	RADIO	FREQUENCY	IDENTIFICATION
(RFID)	READER	TO	BUILD	A	WIRELESS	ID	CARD	ENTRY	SYSTEM.

PARTS	REQUIRED
•	Arduino	board

•	Breadboard

•	Jumper	wires

•	Mifare	RFID-RC522	module

•	Tower	Pro	SG90	9g	servomotor

•	Piezo	buzzer

•	Red	LED

•	Green	LED

•	2	220-ohm	resistors

LIBRARIES	REQUIRED
•	RFID

•	SPI

•	Wire

•	Servo

•	Pitches

HOW	IT	WORKS
An	RFID	reader	uses	wireless	technology	to	identify	a	card,	tag,	or	key	fob	without	contact.	The
reader	will	respond	when	the	card	is	placed	near	it.	First,	we	need	the	reader	to	read	the	unique
number	of	our	RFID	card,	and	then	we’ll	add	a	servo	that	will	move	depending	on	whether	the
RFID	reader	recognizes	the	card.	We	could	use	this	ID	system	for	something	like	a	door	or	box
lock,	as	with	the	secret	knock	code	lock	in	Project	9.

You	may	have	seen	a	sticker	like	the	one	in	Figure	23-1	on	an	item	you	have	purchased.	These
stickers	use	RFID	to	allow	the	store	to	track	items	for	security	purposes.	If	you	pass	through	the
RFID	field	at	the	exit	without	paying,	the	stickers	will	set	off	the	alarm.	RFID	readers	and	cards
are	also	often	used	as	identification	to	allow	access	into	restricted	areas,	like	top-secret	labs	or
gated	communities.

FIGURE	23-1:
An	RFID	sticker

There	are	two	types	of	RFID:	passive	and	active.	Each	RFID	system	uses	a	radio	frequency	to
exchange	a	signal	between	the	reader	and	the	tag	or	card.	This	signal	contains	the	tag	or	card’s
unique	code,	and	if	the	RFID	reader	recognizes	that	code,	it	reacts	appropriately—for	example,	by
allowing	the	item	to	pass	through	the	detectors	in	a	store	or	by	unlocking	a	door.

In	a	passive	system,	when	the	two	are	passed	close	to	each	other,	the	reader’s	radio	signal
powers	the	circuit	in	the	tag	or	card	just	enough	for	them	to	exchange	data.	Active	systems	have	a
powered	reader	and	a	powered	tag	and	can	read	tags	accurately	from	much	farther	away.	Active
systems	are	very	expensive	and	used	for	more	sophisticated	applications,	so	we’ll	be	using	a	passive
RFID	system:	the	Mifare	RFID-RC522	reader,	which	comes	with	a	blank	card	and	key	fob,	like
those	shown	in	Figure	23-2.	The	reader	operates	at	13.56	MHz,	which	means	it	can	identify	the
card	or	fob,	each	of	which	is	powered	by	the	reader,	only	if	it	is	less	than	a	few	inches	away.	It’s
important	to	keep	this	in	mind	when	positioning	your	reader.

FIGURE	23-2:
RFID	reader	with	card	and	key	fob

We’ll	create	an	RFID-controlled	servo.	When	you	pass	your	card	in	front	of	the	RFID	reader,
it	reads	the	card.	If	the	module	recognizes	the	card	and	the	card	has	access	rights,	the	green	LED
lights	up,	a	tune	plays,	and	the	servomotor	moves	180	degrees.	If	the	module	does	not	recognize
the	card,	the	red	LED	lights	up,	a	different	tune	plays,	and	the	servo	does	not	move.

Table	23-1	describes	the	various	functions	of	the	RFID	reader.

TABLE	23-1:
Functions	of	the	RFID	reader	pins

RFID DETAIL NOTES

3.3V 3.3	volts The	module	can	use	only	this	amount	of	voltage.

RST Reset Will	clear	the	module	to	initial	state.

GND Ground Connects	to	the	Arduino	GND	pin.

IRQ Interrupt
Request Not	used	in	this	project.

MISO Master	In
Slave	Out Sometimes	referred	to	as	“data	in.”

MOSI Master	Out
Slave	In Sometimes	referred	to	as	“data	out.”

SCK Serial	Clock Output	from	master.	This	creates	a	pulse	that	synchronizes	data,	usually
set	by	the	master.

SDA/SS
Serial

Data/Slave
Select

Modules	will	have	either	SDA	or	SS,	although	they	are	the	same.	This	is
how	the	Arduino	and	module	share	data	and	communicate.

Pin	16 VCC Positive	power.

THE	BUILD

1.	 You	may	need	to	set	up	the	module	by	soldering	the	header	pins	to	it	first.	Snap	off	a	strip	of
eight	header	pins.	Solder	one	header	pin	to	each	point.	Make	sure	to	hold	the	solder	iron	in
place	for	only	a	few	seconds	so	you	don’t	damage	the	circuits.	See	the	“Quick	Soldering
Guide”	on	page	18	for	a	primer	on	soldering.

2.	 Place	your	RFID	module	into	a	breadboard	as	shown	in	Figure	23-3,	and	then	connect	the
RFID	pins	to	the	Arduino	pins	as	indicated	in	the	following	table.	Remember	to	connect	the
RFID	board	to	3.3V	power	on	the	Arduino	(not	+5V),	or	you	will	damage	the	module.

2.	 FIGURE	23-3:
Placing	the	RFID	module	into	the	breadboard

RFID ARDUINO

3.3V 3.3V

RST Pin	5

GND GND

IRQ Not	used

MISO Pin	12

MOSI Pin	11

SCK Pin	13

SDA Pin	10

3.	 Now	we	need	to	check	that	the	RFID	module	is	working.	Download	the	RFID	library	from
http://www.nostarch.com/arduinohandbook/	and	save	it	in	your	libraries	directory	(see	“Libraries”
on	page	7	for	details	on	downloading	libraries).	Upload	the	following	test	sketch	for	the
RFID	reader.	Keep	the	USB	cable	from	your	PC	connected	to	the	Arduino.

//	RFID	Library	Created	by	Miguel	Balboa	(circuitito.com)
#include	<SPI.h>
#include	<RFID.h>
#define	SS_PIN	10

http://www.nostarch.com/arduinohandbook/

#define	RST_PIN	9
RFID	rfid(SS_PIN,	RST_PIN);

//	Setup	variables
int	serNum0;
int	serNum1;
int	serNum2;
int	serNum3;
int	serNum4;

void	setup()	{
		Serial.begin(9600);
		SPI.begin();
		rfid.init();
}

void	loop()	{	//	This	loop	looks	for	a	card(s)	to	read
		if	(rfid.isCard())	{
				if	(rfid.readCardSerial())	{
						if	(rfid.serNum[0]	!=	serNum0
										&&	rfid.serNum[1]	!=	serNum1
										&&	rfid.serNum[2]	!=	serNum2
										&&	rfid.serNum[3]	!=	serNum3
										&&	rfid.serNum[4]	!=	serNum4
)	{
								//	When	a	card	is	found,	the	following	code	will	run
								Serial.println("	");
								Serial.println("Card	found");
								serNum0	=	rfid.serNum[0];
								serNum1	=	rfid.serNum[1];
								serNum2	=	rfid.serNum[2];
								serNum3	=	rfid.serNum[3];
								serNum4	=	rfid.serNum[4];

								//	Print	the	card	ID	to	the	Serial	Monitor	of	the	IDE
								Serial.println("Cardnumber:");
								Serial.print("Dec:	");
								Serial.print(rfid.serNum[0],	DEC);
								Serial.print(",	");
								Serial.print(rfid.serNum[1],	DEC);
								Serial.print(",	");
								Serial.print(rfid.serNum[2],	DEC);
								Serial.print(",	");
								Serial.print(rfid.serNum[3],	DEC);
								Serial.print(",	");
								Serial.print(rfid.serNum[4],	DEC);
								Serial.println("	");
								Serial.print("Hex:	");
								Serial.print(rfid.serNum[0],	HEX);
								Serial.print(",	");
								Serial.print(rfid.serNum[1],	HEX);
								Serial.print(",	");
								Serial.print(rfid.serNum[2],	HEX);
								Serial.print(",	");
								Serial.print(rfid.serNum[3],	HEX);
								Serial.print(",	");
								Serial.print(rfid.serNum[4],	HEX);
								Serial.println("	");

						}	else	{
								//	If	the	ID	matches,	write	a	dot	to	the	Serial	Monitor
								Serial.print(".");
						}
				}

		}
		rfid.halt();
}

4.	 Open	the	Arduino	Serial	Monitor	in	your	IDE.

5.	 Pass	either	your	card	or	key	fob	in	front	of	the	RFID	module.	The	unique	number	should
appear	on	the	Serial	Monitor,	as	shown	in	Figure	23-4.	Write	down	this	number,	because
you’ll	need	it	later.	In	this	case,	my	card	number	is	4D	55	AD	D3	66.

5.	 FIGURE	23-4:
The	RFID	number	represented	in	hexadecimal	on	the	screen

6.	 Insert	the	two	LEDs	into	the	breadboard,	with	the	shorter,	negative	wires	connected	to	the
GND	rail.	Connect	the	longer,	positive	wire	on	the	red	LED	to	Arduino	pin	3	via	a	220-ohm
resistor.	Connect	the	positive	leg	of	the	green	LED	to	pin	2	via	another	220-ohm	resistor.

LEDS ARDUINO

Negative	legs GND

Positive	leg	(red) Pin	3	via	220-ohm	resistor

Positive	leg	(green) Pin	2	via	220-ohm	resistor

7.	 Connect	the	servo	to	the	Arduino	by	attaching	the	red	wire	to	+5V,	the	brown	(or	black)	wire
to	GND,	and	the	yellow	wire	to	Arduino	pin	9.

SERVO ARDUINO

Red	wire +5V

Black	wire GND

Yellow	wire Pin	9

8.	 Connect	the	piezo	buzzer	to	the	Arduino	by	attaching	the	red	wire	to	Arduino	pin	8	and	the
black	wire	to	GND.	Your	build	should	now	look	something	like	Figure	23-5.

PIEZO ARDUINO

Red	wire Pin	8

Black	wire GND

8.	 FIGURE	23-5:
Completed	RFID	project

9.	 Open	the	project	code	in	your	Arduino	IDE	and	change	the	following	line	to	match	the	hex
number	you	found	for	your	card	or	key	fob	in	step	5	using	the	RFID	reader.	Leave	the	0x	as	it
appears,	but	fill	in	the	rest	with	your	number.

byte	card[5]	=	{0x4D,0x55,0xAD,0xD3,0x66};

10.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	23-6,	and	then	upload	the
code	from	“The	Sketch”	on	page	203	to	your	Arduino.

10.	 FIGURE	23-6:
Circuit	diagram	for	the	wireless	ID	card	entry	system

THE	SKETCH
The	sketch	begins	by	calling	on	the	SPI,	RFID,	Servo,	Pitches,	and	Wire	libraries	to	control
communication	between	the	Arduino,	RFID	module,	and	servo.	Two	melodies	are	defined,	one
for	a	positive	reading	on	your	card	and	the	other	for	a	negative	reading.	The	green	LED	is	set	to
Arduino	pin	2,	the	red	LED	to	pin	3,	the	piezo	buzzer	to	pin	8,	and	the	servo	to	pin	9.

The	following	line	is	where	you	add	your	card’s	hex	value:

byte	card[5]	=	{0x4D,0x55,0xAD,0xD3,0x66};

Pass	your	card	in	front	of	the	reader.	If	the	hex	code	on	the	card	matches	that	in	your	sketch,
the	green	LED	lights	up,	a	tune	plays,	and	the	servo	moves.	The	reader	rejects	all	other	cards
unless	you	add	their	number	to	the	code	at	➊.	If	a	card	is	rejected,	the	red	LED	lights	up	and	a
different	tune	plays,	but	the	servo	does	not	move.

			#include	<SPI.h>

			#include	<RFID.h>
			#include	<Servo.h>
			#include	"pitches.h"
			#include	<Wire.h>

			RFID	rfid(10,	5);	//	Define	the	RFID

			//	Replace	this	with	the	code	from	your	card	in	hex	form

➊	byte	card[5]	=	{0x4D,0x55,0xAD,0xD3,0x66};
			//	List	any	other	codes	for	cards	with	access	here

			byte	serNum[5];
			byte	data[5];

			//	Define	the	melodies	for	successful	access	and	denied	access
			int	access_melody[]	=	{NOTE_G4,	0,	NOTE_A4,	0,	NOTE_B4,	0,	NOTE_A4,
			0,	NOTE_B4,	0,	NOTE_C5,	0};
			int	access_noteDurations[]	=	{8,	8,	8,	8,	8,	4,	8,	8,	8,	8,	8,	4};
			int	fail_melody[]	=	{NOTE_G2,	0,	NOTE_F2,	0,	NOTE_D2,	0};
			int	fail_noteDurations[]	=	{8,	8,	8,	8,	8,	4};

			int	LED_access	=	2;			//	Pin	connected	to	green	LED
			int	LED_intruder	=	3;	//	Pin	connected	to	red	LED
			int	speaker_pin	=	8;		//	Pin	connected	to	piezo	buzzer
			int	servoPin	=	9;					//	Pin	connected	to	servo

			Servo	doorLock;	//	Define	the	servomotor

			void	setup()	{
					doorLock.attach(servoPin);	//	Set	servo	as	a	pin
					Serial.begin(9600);	//	Start	serial	communication
					SPI.begin();	//	Start	serial	communication	between	the	RFID	and	PC
					rfid.init();	//	Initialize	the	RFID
					Serial.println("Arduino	card	reader");
					delay(1000);
					pinMode(LED_access,	OUTPUT);
					pinMode(LED_intruder,	OUTPUT);
					pinMode(speaker_pin,	OUTPUT);
					pinMode(servoPin,	OUTPUT);
			}

			void	loop()	{	//	Create	a	variable	for	each	user
					boolean	card_card	=	true;	//	Define	your	card
					if	(rfid.isCard())	{
							if	(rfid.readCardSerial())	{
									delay(1000);
									data[0]	=	rfid.serNum[0];
									data[1]	=	rfid.serNum[1];
									data[2]	=	rfid.serNum[2];
									data[3]	=	rfid.serNum[3];
									data[4]	=	rfid.serNum[4];
							}
							Serial.print("Card	found	-	code:");
							for	(int	i	=	0;	i	<	5;	i++)	{
									//	If	it	is	not	your	card,	the	card	is	considered	false
									if	(data[i]	!=	card[i])	card_card	=	false;
							}
							Serial.println();
							if	(card_card)	{	//	A	card	with	access	permission	is	found
									Serial.println("Hello!");	//	Print	to	Serial	Monitor
									for	(int	i	=	0;	i	<	12;	i++)	{	//	Play	welcome	music
											int	access_noteDuration	=	1000	/	access_noteDurations[i];
											tone(speaker_pin,	access_melody[i],	access_noteDuration);

											int	access_pauseBetweenNotes	=	access_noteDuration	*	1.30;
											delay(access_pauseBetweenNotes);
											noTone(speaker_pin);
									}
							}
							else	{	//	If	the	card	is	not	recognized
									//	Print	message	to	Serial	Monitor
									Serial.println("Card	not	recognized!	Contact	administrator!");
									digitalWrite(LED_intruder,	HIGH);	//	Turn	on	red	LED
									for	(int	i	=	0;	i	<	6;	i++)	{	//	Play	intruder	melody
											int	fail_noteDuration	=	1000	/	fail_noteDurations[i];
											tone(speaker_pin,	fail_melody[i],	fail_noteDuration);
											int	fail_pauseBetweenNotes	=	fail_noteDuration	*	1.30;
											delay(fail_pauseBetweenNotes);
											noTone(speaker_pin);
									}
									delay(1000);
									digitalWrite(LED_intruder,	LOW);	//	Turn	off	red	LED
							}
			
							if	(card_card)	{	//	Add	other	users	with	access	here
									Serial.println("Access	granted.......Welcome!");
									digitalWrite(LED_access,	HIGH);	//	Turn	on	green	LED
									doorLock.write(180);	//	Turn	servo	180	degrees
									delay(5000);	//	Wait	for	5	seconds
									doorLock.write(0);	//	Turn	servo	back	to	0	degrees
									digitalWrite(LED_access,	LOW);	//	Turn	off	green	LED
							}
							Serial.println();
							delay(500);
							rfid.halt();
					}
			}

PART	7
ADVANCED

PROJECT	24:	RAINBOW	LIGHT	SHOW
IN	THIS	PROJECT,	WE’LL	CREATE	A	RAINBOW	LIGHT	SHOW	USING	AN
8×8	RGB	LED	MATRIX.	WE’LL	ALSO	USE	SHIFT	REGISTERS	TO	EXTEND
THE	ARDUINO	AND	CONTROL	THE	MATRIX.

PARTS	REQUIRED
•	Arduino	board

•	2	full-size	breadboards

•	Jumper	wires

•	8×8	RGB	LED	matrix

•	4	74HC595	shift	registers

•	16	220-ohm	resistors

•	8	330-ohm	resistors

HOW	IT	WORKS
An	RGB	LED	matrix	(Figure	24-1)	is	a	grid	of	64	red,	green,	and	blue	LEDs.	You	can	create	the
colors	of	the	rainbow	by	controlling	each	LED	individually	and	by	mixing	colors	together.

FIGURE	24-1:
An	RGB	LED	matrix

The	LED	matrix	has	a	total	of	32	pins	(Figure	24-2);	8	pins	control	the	common-anode
positive	leg	of	each	LED,	and	8	pins	apiece	control	the	level	of	red,	green,	and	blue.	In	the	matrix
we’ve	used	here,	pins	17–20	and	29–32	are	the	anode	pins,	9–16	are	for	red,	21–28	for	green,	and	1–
8	for	blue,	but	your	matrix	may	have	different	connections.	Pin	number	1	will	be	identified	as
shown	in	the	bottom-left	corner	of	Figure	24-2—the	pin	numbers	run	clockwise	in	this	image.

FIGURE	24-2:
The	pins	of	an	RGB	LED	matrix

Your	matrix	should	have	come	with	a	data	sheet	that	tells	you	which	pins	control	the	red,
green,	and	blue	LEDs.	If	the	pin	numbers	on	your	data	sheet	are	different	from	those	listed	in
Table	24-1,	follow	your	data	sheet	to	make	the	connections	to	the	shift	registers	and	the	Arduino.
Each	color	pin	requires	a	resistor	to	prevent	it	from	overloading	and	burning	out,	but	the	values
are	slightly	different—use	220-ohm	resistors	for	the	blue	and	green,	and	330-ohm	resistors	for	the
red.

TABLE	24-1:
Pin	configuration	for	an	RGB	LED	matrix

MATRIX	PIN	FUNCTION MATRIX	PIN	NUMBER

Common	anode	(+) 17,	18,	19,	20,	29,	30,	31,	32

Red	LEDs 9,	10,	11,	12,	13,	14,	15,	16

Green	LEDs 21,	22,	23,	24,	25,	26,	27,	28

Blue	LEDs 1,	2,	3,	4,	5,	6,	7,	8

The	layout	may	look	complicated,	but	that’s	simply	because	we’re	using	so	many	different
wires.	Just	remember	to	take	the	project	one	step	at	a	time.

Because	there	are	so	many	connections,	we’ll	run	out	of	pins	on	the	Arduino	board,	so	we’ll
extend	the	board	using	shift	registers.	A	shift	register	is	a	digital	memory	circuit	found	in
calculators,	computers,	and	data-processing	systems.	This	project	uses	the	74HC595	shift	register
to	control	eight	outputs	at	a	time,	while	taking	up	only	three	pins	on	your	Arduino.	We’ll	link
multiple	registers	together	to	control	more	pins	at	once,	using	one	for	the	common	anode	and	one
for	each	LED	color.

The	pin	layout	for	the	shift	register	is	shown	in	Figure	24-3,	and	the	functions	are	described	in
Table	24-2.	When	building	the	project,	we’ll	refer	to	the	pin	number	of	the	shift	register	and
function	to	assist	identification.

FIGURE	24-3:
Pin	layout	for	the	shift	register

TABLE	24-2:
Shift	register	pins

SHIFT	REGISTER CONNECTIONS PIN	FUNCTION

Pins	1–7,	15 Q0–Q7 Output	pins

Pin	8 GND Ground,	VSS

Pin	9 SO Serial	out

Pin	10 MR Master	Reclear,	active	low

Pin	11 SH_CP Shift	register	clock	pin	(CLOCK	pin)

Pin	12 ST_CP Storage	register	clock	pin	(LATCH	pin)

Pin	13 OE Output	Enable,	active	low

Pin	14 DS Serial	data	input	(DATA	pin)

Pin	16 VCC Positive	power

THE	BUILD

1.	 Insert	the	8×8	RGB	LED	matrix	across	two	full-size	breadboards.

2.	 Insert	a	330-ohm	resistor	for	each	red	LED	pin	and	a	220-ohm	resistor	for	each	green	or	blue
LED	pin.

3.	 Insert	the	first	shift	register	into	one	of	the	breadboards	near	the	common-anode	pins	on	the
LED	matrix.	Place	the	register	so	that	it	straddles	the	center	break,	as	shown	in	Figure	24-4.
Connect	the	common-anode	pins	of	the	LED	matrix	to	shift	register	1	as	follows.	These	pins
do	not	need	resistors.

COMMON-ANODE	PINS SHIFT	REGISTER	1	PINS

LED	MATRIX SHIFT	REGISTER SHIFT	REGISTER ARDUINO

32 15:	Q0 8:	GND GND

31 1:	Q1 9:	SO Shift	3	DS

30 2:	Q2 10:	MR +5V

29 3:	Q3 11:	SH-CP 13

20 4:	Q4 12:	ST-CP 10

19 5:	Q5 13:	OE GND

18 6:	Q6 14:	DS Shift	2	SO

17 7:	Q7 16:	VCC +5V

3.	 FIGURE	24-4:
The	shift	registers	should	straddle	the	break	of	the	breadboard.

4.	 Now	insert	the	remaining	three	shift	registers	into	the	breadboard.	Shift	register	2	controls
the	green	LEDs,	shift	register	3	controls	the	blue	LEDs,	and	shift	register	4	controls	the	red
LEDs.	Connect	the	wires	for	each	shift	register	as	shown	in	the	following	tables.	All	color
LED	pins	will	need	resistors.

GREEN	LED	PINS SHIFT	REGISTER	2	PINS

LED	MATRIX SHIFT	REGISTER SHIFT	REGISTER ARDUINO

28 15:	Q0 8:	GND GND

27 1:	Q1 9:	SO Shift	1	DS

26 2:	Q2 10:	MR +5V

25 3:	Q3 11:	SH-CP 13

24 4:	Q4 12:	ST-CP 10

23 5:	Q5 13:	OE GND

22 6:	Q6 14:	DS 11

21 7:	Q7 16:	VCC +5V

BLUE	LED	PINS SHIFT	REGISTER	3	PINS

LED	MATRIX SHIFT	REGISTER SHIFT	REGISTER ARDUINO

1 15:	Q0 8:	GND GND

2 1:	Q1 9:	SO Shift	4	DS

3 2:	Q2 10:	MR +5V

4 3:	Q3 11:	SH-CP 13

5 4:	Q4 12:	ST-CP 10

6 5:	Q5 13:	OE GND

7 6:	Q6 14:	DS Shift	1	SO

8 7:	Q7 16:	VCC +5V

RED	LED	PINS SHIFT	REGISTER	4	PINS

LED	MATRIX SHIFT	REGISTER SHIFT	REGISTER ARDUINO

9 15:	Q0 8:	GND GND

10 1:	Q1 9:	SO Shift	3	DS

11 2:	Q2 10:	MR +5V

12 3:	Q3 11:	SH-CP 13

13 4:	Q4 12:	ST-CP 10

14 5:	Q5 13:	OE GND

15 6:	Q6 14:	DS Shift	2	SO

16 7:	Q7 16:	VCC +5V

5.	 The	Arduino	controls	the	LEDs	through	three	PWM	pins,	one	each	for	clock,	data,	and
latch.	Each	pin	is	connected	to	the	Arduino	as	follows.

SHIFT	REGISTER ARDUINO FUNCTION

Pin	9	(shift	reg	2) Pin	11 Data

Pin	12	(all	shift	reg) Pin	10 Latch

Pin	11	(all	shift	reg) Pin	13 Clock

6.	 Check	that	your	setup	matches	the	circuit	diagram	in	Figure	24-5,	and	then	upload	the	code
in	“The	Sketch”	below.

6.	 FIGURE	24-5:
The	circuit	diagram	for	the	rainbow	maker

THE	SKETCH
The	sketch	first	defines	the	three	Arduino	pins	that	control	the	shift	registers.	The	latch	pin	is
defined	as	Arduino	pin	10,	the	clock	pin	as	13,	and	the	data	pin	as	11.	We	define	a	number	of
variables	between	0	and	255	to	control	the	brightness	of	the	LED	colors.	The	sketch	then	turns	on
each	LED	fully	in	turn	and	combines	the	three	colors	to	create	the	colors	of	the	rainbow.	For
instance,	with	green	on,	blue	off,	and	red	on,	the	color	yellow	is	displayed.	The	sketch	then
finishes	by	cycling	though	random	colors.

/*	Example	18.1	-	experimenting	with	RGB	LED	matrix
			CC	by-sa	3.0
			http://tronixstuff.wordpress.com/tutorials
*/

int	latchpin	=	10;	//	Connect	to	pin	12	on	all	shift	registers
int	clockpin	=	13;	//	Connect	to	pin	11	on	all	shift	registers
int	datapin	=	11;		//	Connect	to	pin	14	on	shift	register	2
int	zz	=	500;	//	Delay	variable
int	va[]	=	{
		1,	2,	4,	8,	16,	32,	64,	128,	255
};
int	va2[]	=	{
		1,	3,	7,	15,	31,	63,	127,	255
};

void	setup()	{
		pinMode(latchpin,	OUTPUT);

		pinMode(clockpin,	OUTPUT);
		pinMode(datapin,	OUTPUT);
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);
		digitalWrite(latchpin,	HIGH);
		randomSeed(analogRead(0));
}

void	allRed()	{	//	Turn	on	all	red	LEDs
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Turn	cathodes	to	full
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Turn	green	to	0
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Turn	blue	to	0
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Turn	red	to	full
		digitalWrite(latchpin,	HIGH);
}

void	allBlue()	{	//	Turn	on	all	blue	LEDs
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Turn	cathodes	to	full
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Turn	green	to	0
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Turn	blue	to	full
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Turn	red	to	0
		digitalWrite(latchpin,	HIGH);
}

void	allGreen()	{	//	Turn	on	all	green	LEDs
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	allOn()	{	//	Turn	on	all	LEDs
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	allYellow()	{	//	Turn	on	green	and	red	LEDs	(yellow)
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	allAqua()	{	//	Turn	on	green	and	blue	LEDs	(aqua)
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	allPurple()	{	//	Turn	on	blue	and	red	LEDs	(purple)
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	255);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	clearMatrix()	{	//	Turn	off	all	LEDs
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	0);	//	Red
		digitalWrite(latchpin,	HIGH);
}

void	lostinspace()	{	//	Random	flashes	of	the	LEDs
		for	(int	z	=	0;	z	<	100;	z++)	{
				digitalWrite(latchpin,	LOW);
				shiftOut(datapin,	clockpin,	MSBFIRST,	va[random(8)]);	//	Cathodes
				shiftOut(datapin,	clockpin,	MSBFIRST,	va[random(8)]);	//	Green
				shiftOut(datapin,	clockpin,	MSBFIRST,	va[random(8)]);	//	Blue
				shiftOut(datapin,	clockpin,	MSBFIRST,	va[random(8)]);	//	Red
				digitalWrite(latchpin,	HIGH);
				delay(100);
		}
}

void	displayLEDs(int	rr,	int	gg,	int	bb,	int	cc,	int	dd)	{
//	Insert	the	base-10	values	into	the	shiftOut	functions
//	and	hold	the	display	for	dd	milliseconds
		digitalWrite(latchpin,	LOW);
		shiftOut(datapin,	clockpin,	MSBFIRST,	cc);	//	Cathodes
		shiftOut(datapin,	clockpin,	MSBFIRST,	gg);	//	Green
		shiftOut(datapin,	clockpin,	MSBFIRST,	bb);	//	Blue
		shiftOut(datapin,	clockpin,	MSBFIRST,	rr);	//	Red
		digitalWrite(latchpin,	HIGH);
		delay(dd);
}

void	loop()	{	//	Light	up	the	whole	display	in	solid	colors
		allOn();
		delay(zz);

		delay(zz);
		allRed();
		delay(zz);

		delay(zz);
		allGreen();
		delay(zz);

		delay(zz);
		allBlue();
		delay(zz);

		delay(zz);
		allPurple();
		delay(zz);

		delay(zz);
		allYellow();
		delay(zz);

		delay(zz);
		allAqua();
		delay(1000);
		//	Light	some	individual	LEDs	using	random	values
		lostinspace();	//	Scroll	some	horizontal	and	vertical	lines
		for	(int	z	=	0;	z	<	5;	z++)	{
				for	(int	q	=	1;	q	<	129;	q	*=	2)	{
						displayLEDs(255,	0,	0,	q,	200);
				}
		}
		clearMatrix();
		delay(1000);

		for	(int	z	=	0;	z	<	5;	z++)	{
				for	(int	q	=	1;	q	<	129;	q	*=	2)	{
						displayLEDs(0,	255,	0,	q,	200);
						displayLEDs(q,	0,	0,	255,	200);
				}
		}
		clearMatrix();
		delay(1000);

		for	(int	z	=	0;	z	<	5;	z++)	{
				for	(int	q	=	1;	q	<	9;	q++)	{
						displayLEDs(0,	0,	255,	va2[q],	200);
				}
		}
		clearMatrix();
		delay(1000);
}

PROJECT	25:	BUILD	YOUR	OWN	ARDUINO!
THIS	PROJECT	WILL	TEACH	YOU	HOW	TO	BUILD	YOUR	OWN	ARDUINO
USING	MINIMAL	INDIVIDUAL	COMPONENTS.

PARTS	REQUIRED
•	ATMEL	ATmega328p	chip

•	Breadboard

•	Green	LED

•	Red	LED

•	3	220-ohm	resistors

•	16	MHz	crystal	oscillator	(HC-495)

•	L7805cv	5V	regulator

•	2	100	μF	electrolytic	capacitors

•	PP3	9V	battery	clip

•	Momentary	tactile	four-pin	pushbutton

•	2	22	pF	disc	capacitors

•	Jumper	wires

•	9V	battery

This	is	a	fun	and	inexpensive	little	board	with	the	same	functionality	as	an	Arduino,	so	it	can
be	used	as	part	of	a	permanent	project	in	place	of	the	pricier	Arduino	board.

HOW	IT	WORKS
Our	project	board	works	exactly	the	same	as	an	Arduino	board.	At	its	heart	is	the	ATMEL
ATmega328p	chip	(Figure	25-1),	to	which	we’ll	connect	additional	components.	The	ATmega
chip	is	the	brain	of	the	Arduino	and	carries	out	the	instructions	from	an	uploaded	sketch.

FIGURE	25-1:
The	ATMEL	ATmega328p	chip

The	L7805cv	5V	regulator	regulates	the	voltage	and	limits	the	current	of	the	9V	battery	to
5V,	the	level	at	which	the	ATmega	chip	operates,	thereby	protecting	the	chip	and	additional
components.	The	16	MHz	crystal	oscillator	(Figure	25-2)	allows	the	Arduino	to	calculate	time,
and	the	capacitors	act	as	a	filter	to	smooth	voltage.

FIGURE	25-2:
The	16	MHz	crystal	oscillator

Table	25-1	details	the	pins	of	the	ATmega328p	chip	and	how	they	correspond	to	the	Arduino
pins.	For	example,	pin	13	on	the	Arduino,	which	we	used	to	test	our	Arduino	in	“Testing	Your
Arduino:	Blinking	an	LED”	on	page	9,	would	be	pin	19	on	the	actual	chip.	The	top	of	the	chip
can	be	identified	by	the	small	semicircle	indentation	(Figure	25-3).	Pin	1	is	below	this	indentation,
and	the	pins	are	numbered	1–28	counterclockwise	from	there.

TABLE	25-1:
The	ATmega	chip’s	pins	and	their	corresponding	Arduino	pins

ATMEGA	PIN ARDUINO	FUNCTION ATMEGA	PIN ARDUINO	FUNCTION

1 Reset 15 Pin	9

2 Pin	0 16 Pin	10

3 Pin	1 17 Pin	11

4 Pin	2 18 Pin	12

5 Pin	3 19 Pin	13

6 Pin	4 20 BCC

7 VCC 21 AREF

8 GND 22 GND

9 Crystal 23 A0

10 Crystal 24 A1

11 Pin	5 25 A2

12 Pin	6 26 A3

13 Pin	7 27 A4

14 Pin	8 28 A5

FIGURE	25-3:
The	top	of	the	chip	is	marked	with	a	semicircle	indentation.

PREPARING	THE	CHIP
Make	sure	to	buy	an	ATmega	chip	with	the	Arduino	bootloader	installed,	as	it	will	also	come
preloaded	with	the	blinking	LED	sketch,	which	you’ll	need	for	this	project.

Our	homemade	Arduino	does	not	have	a	USB	connector	for	the	chip	to	connect	directly	to
your	PC,	so	if	you	want	to	use	this	Arduino	breadboard	with	a	different	sketch	(or	ir	your	chip
didn’t	come	with	the	bootloader	installed),	you’ll	need	to	use	an	existing	Arduino	board	as	a	host
and	upload	the	sketch	to	your	ATmega	chip	as	follows:

1.	 Carefully	pry	the	Arduino	ATmega	chip	from	your	existing	Arduino	board	(Figure	25-4),	and
replace	it	with	your	ATmega	chip.

1.	 FIGURE	25-4:
Removing	the	ATmega	chip	from	the	Arduino

2.	 Connect	the	Arduino	to	your	PC	using	a	USB	cable.

3.	 Open	the	Arduino	IDE	on	your	PC.

4.	 Load	the	sketch	onto	the	chip.

5.	 Once	the	sketch	is	uploaded,	disconnect	the	Arduino	from	your	PC,	gently	remove	this	chip
from	the	board,	and	replace	the	original	Arduino	ATmega	chip.

The	new	ATmega	chip	should	be	loaded	with	the	desired	sketch.	Generally	you’d	want	to
build	your	own	Arduino	as	part	of	a	permanent	project,	so	the	ability	to	easily	load	new	sketches	is
not	usually	required;	you’d	just	load	one	sketch	at	the	beginning	of	the	project	and	use	that	sketch
from	then	on.

You	are	now	ready	to	prepare	your	own	board.

BUILDING	THE	ARDUINO	CIRCUIT
I	normally	show	the	circuit	diagram	at	the	end	of	the	chapter,	but	in	this	instance	it’s	helpful	to
look	at	it	first	to	reference	the	layout	and	identify	the	components	being	used	(Figure	25-5).

FIGURE	25-5:
The	complete	circuit	diagram

1.	 Insert	the	ATmega	chip	into	the	breadboard	with	its	legs	straddling	either	side	of	the	center
break.	You	need	a	little	space	at	either	end	for	components,	so	place	it	roughly	as	shown	in
Figure	25-6.	Remember,	pin	1	of	the	ATmega328p	is	directly	below	the	small	semicircle
indentation	on	the	chip.	From	here,	pins	are	numbered	1–28	counterclockwise.	Use	this	to
position	your	chip	correctly.	The	semicircle	should	be	on	the	left	side	of	your	circuit.

1.	 FIGURE	25-6:
Placing	the	ATmega	chip	so	it	straddles	the	center	break

2.	 Connect	pins	7,	20,	and	21	of	the	ATmega	to	their	closest	positive	power	rail	on	the
breadboard,	and	pins	8	and	23	to	the	negative	power	rails.	Use	jumper	wires	to	connect	the
positive	and	GND	power	rails	on	either	side	of	the	board,	as	shown	in	Figure	25-7.

2.	 FIGURE	25-7:
Connecting	to	the	power	rails

3.	 Connect	one	leg	of	the	crystal	oscillator	to	pin	9	on	the	ATmega	chip,	and	connect	the	other
leg	to	pin	10.	Connect	the	legs	of	one	of	the	22	pF	disc	capacitors	to	pin	9	and	GND,	and	the
legs	of	the	other	disc	capacitor	to	pin	10	and	GND,	as	shown	in	Figure	25-8.

3.	 FIGURE	25-8:
Inserting	the	crystal	oscillator	and	22pf	disc	capacitors

4.	 Insert	the	pushbutton	into	the	breadboard	to	the	left	of	the	ATmega	chip,	with	the	legs
straddling	the	center	break	in	the	breadboard.	Using	jumper	wires,	connect	the	lower-right
pin	of	the	pushbutton	to	pin	1	on	the	ATmega,	and	the	lower-left	pin	to	GND,	as	shown	in
Figure	25-9.	Connect	a	220-ohm	resistor	to	the	lower-right	pin,	and	connect	the	other	side	of
this	resistor	to	the	GND	rail.	This	pushbutton	will	act	as	our	reset	button.

4.	 FIGURE	25-9:
Inserting	the	reset	button

5.	 Insert	the	L7805cv	5V	regulator	into	the	top-left	corner	of	the	breadboard	with	the	printed
number	of	the	component	facing	you,	as	shown	in	Figure	25-10—the	pins	are	numbered	1–3
from	left	to	right.	Insert	one	100	μF	electrolytic	capacitor	into	the	top	power	rail	of	the
breadboard,	with	one	pin	in	the	positive	rail	and	the	other	pin	in	the	negative	rail.	Connect
the	second	100	μF	electrolytic	capacitor	to	pins	1	and	2	of	the	5V	regulator.	Then	connect
pin	2	of	the	regulator	to	the	negative	power	rail	and	pin	3	to	the	positive	power	rail.

5.	 FIGURE	25-10:
Connecting	the	electrolytic	capacitors	and	the	L7805cv	5V	regulator

6.	 Insert	the	red	LED	into	the	breadboard,	connecting	the	long,	positive	leg	to	the	positive	rail
via	a	220-ohm	resistor,	and	the	short,	negative	leg	to	GND.	Then	insert	the	green	LED,
connecting	the	short	leg	to	pin	21	on	the	ATmega,	and	the	long	leg	to	the	positive	power	rail
via	a	220-ohm	resistor,	as	shown	in	Figure	25-11.	Add	positive	power	from	the	battery	to	pin
1	on	the	5V	regulator	and	GND	to	pin	2	on	the	regulator.

6.	 FIGURE	25-11:
Inserting	the	LEDs	and	connecting	the	battery

Your	board	is	now	complete	and	should	look	like	Figure	25-12.	The	red	LED	lights	when
power	is	added	to	the	breadboard	rails	to	indicate	that	the	Arduino	is	on	and	working,	and	the
green	LED	lights	in	response	to	the	“Blinking	an	LED”	sketch	loaded	on	the	ATmega	chip.

FIGURE	25-12:
The	completed	circuit

Using	the	reference	in	Table	25-1,	you	can	use	this	board	just	like	an	Arduino	Uno	by
connecting	components	to	the	ATmega	chip	pins	instead	of	the	Arduino	pins.	If	you	want	to	make
any	of	the	projects	from	this	book	permanent,	consider	building	your	own	Arduino	to	power	it!
Remember	to	load	the	sketch	to	the	ATmega	chip	through	the	real	Arduino	board	first.

APPENDIX	A:	COMPONENTS
THIS	APPENDIX	GIVES	YOU	SOME	MORE	INFORMATION	ON	THE
COMPONENTS	USED	IN	THE	PROJECTS	IN	THIS	BOOK.	EACH
COMPONENT	IS	ACCOMPANIED	BY	A	PHOTO	AND	A	FEW	DETAILS	FOR
QUICK	REFERENCE	AND	IDENTIFICATION,	AND	I’VE	INCLUDED	A	HANDY
LIST	OF	RETAILERS	TO	BUY	THE	PARTS	FROM.	YOU’LL	ALSO	GET	A
QUICK	LESSON	ON	READING	RESISTOR	VALUES.

COMPONENTS	GUIDE
Here’s	a	guide	to	the	components	you’ll	use,	with	a	few	details	that	you	might	find	useful.	The
components	are	listed	in	the	order	in	which	they	appear	in	the	book.	Many	of	the	items	can	be
found	with	a	simple	search	on	sites	like	eBay	or	Amazon,	but	a	list	of	specialist	retailers	is	also
provided	on	page	240.

Arduino	Uno	R3
The	Arduino	Uno	R3	is	the	main	component	for	the	book	and	the	brain	for	all	our	projects.

•	Quantity:	1

•	Connections:	14

•	Projects:	All	except	Project	25

9V	Battery	Pack
The	9V	battery	pack	plugs	into	the	Arduino	to	power	your	projects.	You	connect	the	batteries	and
plug	the	jack	into	the	port	in	the	Arduino,	as	discussed	in	“Power”	on	page	3.	Note	that	the
Arduino	can	also	be	powered	through	the	USB	cable.

•	Quantity:	1

•	Connections:	1

•	Projects:	Optional	for	all

Breadboard
The	breadboard	is	a	prototyping	board	used	to	connect	components	and	create	your	projects.	See
“Breadboards”	on	page	4	for	more	information.

•	Quantity:	2	full-size	boards,	1	half-size	board,	1	mini	board

•	Connections:	940	on	a	full	board,	420	on	a	half	board,	170	on	a
mini	board

•	Projects:	All	except	Project	7

LED
An	LED	emits	light	when	a	small	current	is	passed	through	it.	It	looks	like	a	small	light	bulb	with
two	legs.	The	longer	leg	is	the	positive	connection.	LEDs	generally	require	a	resistor	or	they	may
burn	out.	LEDs	are	polarized,	meaning	current	flows	only	in	one	direction.

•	Quantity:	40	(10	each	of	red,	blue,	yellow,	green)

•	Connections:	2

•	Projects:	1–6,	8,	9,	17,	18,	19,	21,	22,	23,	25

Resistor
Resistors	restrict	the	amount	of	current	that	can	flow	through	a	circuit	to	prevent	components
from	overloading.	They	look	like	cylinders	with	colored	bands	and	a	wire	from	either	end.	The
value	is	indicated	by	a	color	code—see	“Decoding	Resistor	Values”	on	page	241	for	more	details.
Check	this	carefully,	as	it	can	be	easy	to	choose	the	wrong	value.	Resistors	come	in	two-,	four-,

and	five-band	varieties,	so	be	aware	that,	for	example,	a	four-band	220-ohm	resistor	can	look
slightly	different	from	a	five-band	resistor	of	the	same	value.

•	Quantity:	30	220-ohm,	10	330-ohm,	1	10k-ohm,	1	1m-ohm
resistors

•	Connections:	2

•	Projects:	1–4,	6,	8,	9,	16,	17,	18,	19,	22,	23,	24,	25

Pushbutton
The	pushbutton	is	a	simple	switch	that	makes	a	connection	when	pushed.	This	switch	connects	a
circuit	when	pushed	in,	but	will	spring	back	when	released	and	break	the	connection.	It	is	also
known	as	a	momentary	switch.	Pushbuttons	vary	in	size,	but	most	will	have	four	pins.

•	Quantity:	4

•	Connections:	4

•	Projects:	2,	8,	15,	16,	17,	25

Potentiometer
A	potentiometer	is	a	resistor	whose	value	you	can	vary	to	manipulate	the	voltage	flowing	through
it.	It	has	a	knob	that	you	can	turn	and	three	pins	at	the	bottom.	The	center	pin	is	the	control	pin,
with	power	to	either	side	(it	doesn’t	matter	which	way	they	are	connected).	It’s	commonly	used	to
control	an	output	such	as	the	volume	on	a	radio.

•	Quantity:	1	50k-ohm	potentiometer

•	Connections:	3

•	Projects:	2,	3,	4,	12,	13,	14,	15,	17

HL-69	Soil	Sensor
A	soil	sensor	measures	the	moisture	content	of	soil.	It	has	two	prongs	and	two	pins	at	the	top.	The
sensor	used	in	the	book	is	the	HL-69	soil	hygrometer.	It	comes	with	a	driver	module	that	you
connect	to	your	Arduino,	rather	than	connecting	straight	to	the	sensor.

•	Quantity:	1

•	Connections:	2

•	Project:	5

Piezo	Buzzer
The	piezo	buzzer	is	a	very	basic	speaker.	A	pulse	of	current	causes	it	to	click	extremely	quickly,
and	a	stream	of	pulses	will	emit	a	tone.	It	often	looks	like	a	small	black	box	with	two	wires.	Taken
out	of	the	case,	it	looks	like	a	small	gold	disc.	It’s	very	cheap	and	used	in	inexpensive	toys	for	noise
generation	(in	sirens,	for	instance).	It	can	also	be	used	as	a	noise	sensor,	as	shown	in	Project	9.

•	Quantity:	1

•	Connections:	2

•	Projects:	5,	7,	8,	9,	15,	17,	18,	19,	21,	23

Servomotor
A	servomotor	is	a	motor	with	an	arm	that	you	can	position	to	specific	angles	by	sending	the	servo
a	coded	signal.	It	is	a	small	box	with	three	wires	and	an	output	shaft,	which	can	have	an	attachment
(known	as	a	horn).	The	red	wire	is	POWER	or	+5V,	the	black/brown	wire	is	GROUND	or	GND,
and	the	orange/white	wire	is	SIGNAL,	which	connects	to	your	Arduino	analog	pin.	The	Tower
Pro	9g	servos	used	in	this	book	will	turn	180	degrees,	but	others	are	continuous	and	can	turn	the
full	360	degrees.

•	Quantity:	2

•	Connections:	3

•	Projects:	9,	10,	11,	18,	20,	22,	23

Joystick
A	joystick	records	an	analog	input	that	can	then	be	read	to	give	a	digital	output.	It’s	basically	two
potentiometers	supplying	a	signal	for	two	axes:	left/right	and	up/down.	It	has	lots	of	applications,
like	gaming	or	controlling	a	servomotor.

•	Quantity:	1

•	Connections:	5

•	Project:	10

Infrared	LED	Receiver
An	infrared	(IR)	LED	receiver	picks	up	infrared	signals	from,	for	example,	a	remote	control.	It	is
an	LED	in	a	small	casing	with	three	legs:	OUT,	GND,	and	+5V	(positive	power).	It’s	polarized	so
it	needs	to	be	connected	in	the	right	way.	Check	the	data	sheet	for	your	receiver,	just	in	case	the
connections	are	different.

•	Quantity:	1

•	Connections:	3

•	Project:	11

LCD	Screen
An	LCD	screen	is	a	display	screen	for	outputting	characters.	Screens	come	in	various	dimensions.
The	one	shown	here	is	an	HD44780	(16	characters	×	2	lines)	and	has	16	connections.	An	LCD
screen	consists	of	two	sheets	of	polarizing	material	with	a	liquid	crystal	solution	between	them;
current	passing	through	the	crystal	creates	an	image.

•	Quantity:	1

•	Connections:	16

•	Projects:	12,	13,	14,	15

DHT11	Humidity	Sensor
The	DHT11	sensor	measures	humidity	and	temperature.	It	is	a	small	blue	or	white	plastic	box
with	four	pins,	though	it’s	sometimes	mounted	on	a	module	board	that	has	only	three	pins.	This
book	uses	the	DHT11	sensor,	and	we	use	only	three	of	the	pins:	+5V,	DATA,	and	GND.

•	Quantity:	1

•	Connections:	4	(but	we’ll	use	only	3)

•	Project:	13

Tilt	Ball	Switch
A	tilt	ball	switch	is	a	casing	with	a	metal	ball	inside	that	makes	a	connection	when	in	an	upright
position.	Tilt	the	switch,	and	the	connection	is	broken.

•	Quantity:	1

•	Connections:	2

•	Project:	14

RGB	LED
An	RGB	LED	module	is	three	colors	in	one—red,	green,	and	blue.	By	combining	the	colors,	you
can	make	any	color	of	the	rainbow.	It	is	a	clear	LED	with	four	legs,	sometimes	mounted	on	a
module	with	built-in	resistors,	as	shown.	You	will	need	to	use	resistors	to	limit	the	current	or	the
LED	will	burn	out.	The	longest	leg	will	be	either	the	common	cathode	or	anode.

•	Quantity:	1

•	Connections:	4

•	Project:	15

Seven-Segment	LED	Display
A	seven-segment	LED	display	shows	a	digit	or	character	using	LED	segments.	They’re	often	used
to	display	numbers	for	counters,	clocks,	or	timers.	You	can	get	single-digit	to	eight-digit	displays,
and	four-digit	displays	are	commonly	used	for	digital	clocks.

•	Quantity:	1

•	Connections:	10–12

•	Projects:	16,	17

Four-Digit,	Seven-Segment	Serial	Display
This	is	a	four-digit	version	of	the	seven-segment	LED,	with	an	additional	built-in	circuit	so	it	can
be	controlled	with	very	few	connections.	This	serial	module	is	the	SparkFun	version	and	comes	in

different	colors.	There	are	10	connections,	but	it	can	be	used	with	only	3	(VCC,	GND,	and	RX)
on	the	Arduino.

•	Quantity:	1

•	Connections:	10	(but	we’ll	use	only	3)

•	Project:	17

Ultrasonic	Sensor
An	ultrasonic	sensor	sends	out	a	signal	(often	referred	to	as	a	ping),	which	bounces	off	an	object	and
is	returned	to	the	sensor.	Distance	is	calculated	from	the	time	the	signal	takes	to	return.	The
sensor	used	in	this	book	is	the	HC-SR04	ultrasonic	sensor.	It	is	a	module	board	with	two	round
sensors	and	four	pins.

•	Quantity:	1

•	Connections:	4

•	Projects:	18,	20

Photoresistor
A	photoresistor,	also	referred	to	as	a	light-dependent	resistor	or	diode,	produces	a	variable
resistance	depending	on	the	amount	of	light	falling	on	it	and	is	used	to	detect	light	levels.	There
are	different	styles,	but	it’s	usually	a	small,	clear	oval	with	wavy	lines	and	two	legs.	You	will	need
to	calibrate	it	to	determine	light	levels	before	using	it	in	a	program.

•	Quantity:	1

•	Connections:	2

•	Project:	19

RC	V959	Missile	Launcher
Produced	for	radio-controlled	helicopters,	the	WLToys	RC	V959	missile	launcher	is	a	mini
Gatling	gun	that	can	fire	six	plastic	rockets	in	quick	succession.	It	has	four	wires,	but	we	use	only
the	yellow	and	white	for	continuous	firing.

•	Quantity:	1

•	Connections:	4	(but	we’ll	use	only	2)

•	Project:	20

PIR	Sensor
The	PIR	(passive	infrared)	sensor	detects	movement	within	its	range.	The	book	uses	the	HC
SR501,	the	most	commonly	available	PIR	sensor.	The	module	pictured	has	a	golf	ball–type	lens
on	the	front	and	three	connections:	+5V,	OUTPUT,	and	GND.	The	orange	cubes	are
potentiometers	that	change	the	distance	range	and	output	timing.

•	Quantity:	1

•	Connections:	3

•	Project:	21

Keypad
A	4×4	keypad	is	basically	a	series	of	switches.	The	example	shown	here	has	16	pushbuttons
connected	in	series;	a	12-button	version	is	also	available.	Of	the	eight	connections,	four	control
the	rows	and	four	control	the	columns.	The	Arduino	will	replicate	the	number	of	the	pressed
button.

•	Quantity:	1

•	Connections:	8

•	Project:	22

RFID	Reader
An	RFID	(radio	frequency	identification)	module	reads	RFID	cards	and	key	fobs	to	allow	or	deny
actions	depending	on	the	access	level	of	the	card.	It	is	a	small	board	with	eight	pins	and	a	built-in
antenna.	The	module	used	in	the	book	is	the	Mifare	RFID-RC522	module,	which	usually	comes
with	a	card	and	fob.

•	Quantity:	1

•	Connections:	8

•	Project:	23

RGB	Matrix
An	8×8	RGB	matrix	is	a	series	of	64	LEDs	that	can	change	through	red,	green,	and	blue	to	create
the	colors	of	the	rainbow.	There	are	32	pins	on	the	matrix:	8	are	for	the	common	anode	of	each
LED,	8	control	the	color	red,	8	control	green,	and	8	control	blue.	Resistors	are	required	for	each
pin	controlling	a	color.

•	Quantity:	1

•	Connections:	32

•	Project:	24

Shift	Register

A	shift	register	is	a	small	integrated	circuit	and	sequential	logic	counter	that	allows	the	Arduino	to
make	more	connections	by	“shifting”	and	storing	data.	It’s	a	small	black	chip	with	16	legs.	At	one
end,	you’ll	find	a	dot	or	semicircle—pin	1	is	to	the	left	of	this	marker.	The	electronic	die	in
Project	16	uses	a	74HC595	shift	register.

•	Quantity:	1

•	Connections:	16

•	Projects:	16,	24

ATmega328p	Chip
The	ATMEL	ATmega328p	chip	is	the	brain	of	the	Arduino;	it	carries	out	the	instructions	from
an	uploaded	sketch.	It’s	a	small	black	chip	with	32	legs.	At	one	end	you’ll	find	a	dot	or	semicircle
—pin	1	is	to	the	left	of	this	marker.

•	Quantity:	1

•	Connections:	32

•	Project:	25

16	MHz	Crystal	Oscillator
The	16	MHz	crystal	oscillator	allows	the	Arduino	to	calculate	time.	It	is	a	small	metal	casing	with
two	legs	and	requires	a	capacitor	on	each	leg	to	help	smooth	voltage	to	the	crystal.	The	frequency
of	the	crystal	is	printed	on	the	front.

•	Quantity:	1

•	Connections:	2

•	Project:	25

5V	Regulator
The	L7805cv	5V	regulator	takes	a	voltage	between	7	and	11	volts	and	steps	it	down	to	a	constant	5
volts.

•	Quantity:	1

•	Connections:	3

•	Project:	25

Capacitor
Capacitors	can	store	a	small	amount	of	electricity	for	later	use	and	can	be	used	to	smooth	voltage
output	and	flow.	They	look	like	small	cylinders	with	two	legs,	and	the	value	is	usually	printed	on
the	side.	Capacitors	have	polarity	and	need	to	be	inserted	correctly.	The	long	leg	is	positive,	and
the	short	leg	is	negative;	this	is	generally	indicated	on	the	cylinder.	There	are	various	types
available;	the	one	shown	here	is	an	aluminum	100μF	electrolytic	capacitor.

•	Quantity:	2

•	Connections:	2

•	Project:	25

Disc	Capacitor
The	22pf	disc	capacitor	is	another	type	of	capacitor	that	can	store	a	small	amount	of	electricity	for
later	use.	It	looks	like	a	small	disc	with	two	legs,	and	the	value	is	usually	printed	on	the	front.
There	are	various	types	available;	the	one	shown	here	is	a	ceramic	version.

•	Quantity:	2

•	Connections:	2

•	Project:	25

Battery	Clip
The	PP3	9V	battery	clip	is	a	simple	connector	for	a	9V	battery.	It’s	a	small	black	clip	that	has	two
wires:	black	for	ground	and	red	for	positive.

•	Quantity:	1

•	Connections:	2

•	Project:	25

RETAILER	LIST
Most	electronic	components	can	be	found	on	generic	sites	like	eBay	or	Amazon,	but	if	you	have
trouble	finding	anything,	the	retailers	listed	here	can	likely	help	you	out.

US	Retailers

Adafruit	https://www.adafruit.com/
DigiKey	http://www.digikey.com/
Jameco	Electronics	http://www.jameco.com/
Little	Bird	Electronics	http://www.littlebirdelectronics.com/
MCM	http://www.mcmelectronics.com/
Newark	element14	http://www.newark.com/
RadioShack	http://www.radioshack.com/
RS	Components	http://www.rs-components.com/
Seeed	Studio	http://www.seeedstudio.com/depot/
SparkFun	https://www.sparkfun.com/

European	Retailers

https://www.adafruit.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.littlebirdelectronics.com/
http://www.mcmelectronics.com/
http://www.newark.com/
http://www.radioshack.com/
http://www.rs-components.com/
http://www.seeedstudio.com/depot/
https://www.sparkfun.com/

Electronic	Sweet	Pea’s	http://www.sweetpeas.se/
Element	14	http://www.element14.com/
Farnell	http://www.farnell.com/
Jameco	Electronics	http://www.jameco.com/

UK	Retailers
4tronix	http://www.4tronix.co.uk/store/
Cool	Components	http://www.coolcomponents.co.uk/
CPC	http://cpc.farnell.com
Hobby	Components	https://www.hobbycomponents.com/
Mallinson	Electrical	http://www.mallinson-electrical.com/shop/
Maplin	http://www.maplin.co.uk/
Oomlout	http://oomlout.co.uk/
The	Pi	Hut	http://thepihut.com/
Proto-pic	http://proto-pic.co.uk/
Rapid	Electronics	http://www.rapidonline.com/
RS	http://uk.rs-online.com/web/
Spiratronics	http://spiratronics.com/

DECODING	RESISTOR	VALUES
In	most	of	projects	in	this	book	we’ve	used	resistors,	electrical	components	that	limit	the	amount	of
current	allowed	through	a	circuit	(measured	in	ohms).	They	are	used	to	protect	components,	like
LEDs,	from	overloading	and	burning	out.	The	value	of	a	resistor	is	identified	by	colored	bands	on
the	body.	Resistors	can	have	four,	five,	or	six	colored	bands.

It’s	important	to	be	able	to	determine	the	value	of	a	resistor	so	that	you	know	you’re	using	the
correct	one	in	your	project.	Let’s	try	to	determine	the	value	of	the	four-band	resistor	shown	in
Figure	A-1.

http://www.sweetpeas.se/
http://www.element14.com/
http://www.farnell.com/
http://www.jameco.com/
http://www.4tronix.co.uk/store/
http://www.coolcomponents.co.uk/
http://cpc.farnell.com
https://www.hobbycomponents.com/
http://www.mallinson-electrical.com/shop/
http://www.maplin.co.uk/
http://oomlout.co.uk/
http://thepihut.com/
http://proto-pic.co.uk/
http://www.rapidonline.com/
http://uk.rs-online.com/web/
http://spiratronics.com/

FIGURE	A-1:
A	four-band	resistor

Viewing	the	resistor	with	the	silver	or	gold	band	on	the	right,	note	the	order	of	the	colors
from	left	to	right.	If	the	resistor	has	no	silver	or	gold	band,	make	sure	the	side	with	the	three
colored	bands	is	on	the	left.

Use	Table	A-1	to	determine	the	value	of	the	resistor.

TABLE	A-1:
Calculating	resistor	values

COLOR FIRST
BAND

SECOND
BAND

THIRD
BAND MULTIPLIER TOLERANCE

Black 0 0 0 1Ω 	

Brown 1 1 1 10Ω +/–1%

Red 2 2 2 100Ω +/–2%

Orange 3 3 3 1KΩ 	

Yellow 4 4 4 10KΩ 	

Green 5 5 5 100KΩ +/–0.5%

Blue 6 6 6 1MΩ +/–0.25%

Violet 7 7 7 10MΩ +/–0.10%

Gray 8 8 8 	 +/–0.05%

White 9 9 9 	 	

Gold 	 	 	 0.1Ω +/–5%

Silver 	 	 	 0.01Ω +/–10%

NOTE
The	band	that	denotes	the	tolerance	is	most	commonly	silver	or	gold,	though	it	can	be	any	color	that	has	a
percentage	listed	in	the	Tolerance	column.	If	you	have	a	resistor	with	a	tolerance	band	that	isn’t	silver	or	gold,
there	should	be	a	small	gap	between	the	value	bands	and	the	tolerance	band	so	you	can	tell	them	apart.

The	values	that	correspond	to	the	first	and	second	bands	give	you	the	numerical	value,	the
third	band	tells	you	how	many	zeros	to	add	to	that	number,	and	the	fourth	band	tells	you	the
tolerance—that	is,	how	much	the	actual	value	can	vary	from	the	intended	value.	For	the	resistor	in
Figure	A-1:

•	First	band	is	brown	(1)	=	1.

•	Second	band	is	black	(0)	=	0.

•	Third	band	is	red	(2)	=	00	(2	is	the	number	of	zeros).

•	Fourth	band	is	gold,	so	the	tolerance	(accuracy)	is	+/–	5	percent.

So	this	resistor	is	1,000	ohms	or	1	kilohm,	with	a	tolerance	of	5	percent,	meaning	that	the
actual	value	can	be	up	to	5	percent	more	or	less	than	1	kilohm.	We	can	do	the	same	calculation	for
a	five-	or	six-band	resistor.

If	you’re	ever	unsure	of	a	resistor’s	value,	a	quick	online	search	of	the	colored	bands	on	the
resistor’s	body	will	help;	just	make	sure	to	list	the	colors	in	the	correct	order,	reading	them	from
left	to	right,	with	the	tolerance	band	on	the	right.

APPENDIX	B:	ARDUINO	PIN	REFERENCE
WITHOUT	GOING	INTO	TOO	MUCH	DETAIL,	THIS	APPENDIX	GIVES	YOU	A
REFERENCE	TO	THE	PINS	ON	THE	ARDUINO	UNO,	THEIR	TECHNICAL
NAMES,	AND	THEIR	FUNCTIONS.	THE	PINS	ARE	EXPLAINED	IN	MORE
DETAIL	IN	THE	PROJECTS	IN	WHICH	THEY’RE	USED,	SO	THE
INFORMATION	HERE	WILL	PROBABLY	MAKE	MORE	SENSE	ONCE	YOU’VE
BUILT	A	FEW	PROJECTS.

ARDUINO
PIN FUNCTION	AND	LABEL ADDITIONAL	FUNCTION

0 RX—Used	to	receive	TTL	serial	data 	

1 TX—Used	to	transmit	TTL	serial	data 	

2 External	interrupt 	

3 External	interrupt Pulse	width	modulation

4 XCK/TO—External	Clock	Input/Output
(Timer/Counter	0) 	

5 T1	(Timer/Counter	1) Pulse	width	modulation

6 AIN0—Analog	comparator	positive	input Pulse	width	modulation

7 AIN1—Analog	comparator	negative	input 	

8 ICP1—Input	capture 	

9 OC1A—Timer	register Pulse	width	modulation

10 SS—Slave	Select	(serial	data)	used	in	SPI
communication Pulse	width	modulation

11 MOSI—Master	Out	Slave	In	(data	in)	used
in	SPI	communication Pulse	width	modulation

12 MISO—Master	In	Slave	Out	(data	out)
used	in	SPI	communication 	

13 SCK—Serial	Clock	(output	from	master)
used	in	SPI	communication 	

AREF Reference	voltage	for	analog	inputs 	

A0 Analog	input	can	give	1,024	different
values. 	

A1 Analog	input	can	give	1,024	different
values. 	

A2 Analog	input	can	give	1,024	different
values. 	

A3 Analog	input	can	give	1,024	different
values. 	

A4 Analog	input	can	give	1,024	different
values.

SDA	(serial	data	line)	pin	supports
TWI	(two-wire	interface)	using	the
Wire	library	for	I2C	components.

A5 Analog	input	can	give	1,024	different
values.

SCL	(serial	clock	line)	pin	supports
TWI	using	the	Wire	library	for	I2C

components.

RESET Can	be	used	to	reset	the	microcontroller 	

3.3V
3.3	volt	output	used	for	low	voltage

components.	This	is	the	only	3.3V	source.
The	digital	and	analog	pins	operate	at	5V.

	

5V Standard	+5V	output 	

GND Ground/negative	power 	

Vin 9V	power	can	be	input	here	or	accessed	if
using	power	jack. 	

Serial:	0	(RX)	and	1	(TX)	These	pins	are	used	to	receive	(RX)	and	transmit	(TX)	transistor-
transistor	logic	(TTL)	serial	data.	We	use	the	TX	pin	in	the	rocket	launcher	in	Project	17.
External	interrupts:	2	and	3	These	pins	can	be	configured	to	trigger	an	interrupt	on	a	low	value,
a	rising	or	falling	edge	(a	signal	going	from	low	to	high	or	high	to	low,	respectively),	or	a	change	in
value.	An	interrupt	is	a	signal	that	tells	the	Arduino	to	stop	and	carry	out	another	function	when
the	pins	have	detected	an	external	event,	such	a	pushbutton	being	pressed.
PWM:	3,	5,	6,	9,	10,	and	11	These	pins	can	be	used	with	pulse	width	modulation	through	the
analogWrite()	function.	There’s	more	information	on	this	in	Project	2.
SPI:	10	(SS),	11	(MOSI),	12	(MISO),	13	(SCK)	These	pins	support	SPI	communication	using
the	SPI	library	and	are	used	a	number	of	times	in	this	book.	We	use	SPI	communication	for	the
electronic	die	in	Project	16	so	that	the	Arduino	can	send	and	receive	data	from	the	shift	register

used	to	control	the	seven-segment	LED.
LED:	13	There	is	a	built-in	LED	connected	to	digital	pin	13.	When	the	pin	is	HIGH,	the	LED	is
on;	when	the	pin	is	LOW,	it’s	off.	The	built-in	LED	on	pin	13	is	used	to	show	when	the	onboard
ATmega328p	bootloader	is	running,	usually	when	the	Arduino	is	starting	up.
AREF	This	is	the	reference	voltage	for	the	analog	inputs;	it’s	used	with	analogReference().	We	can
input	from	0	to	5V,	so	if	your	sensor	requires	a	lower	voltage	than	5V,	you	can	use	this	pin	to
increase	the	resolution	for	a	more	accurate	reading.
Analog	inputs:	A0–A5	The	Uno	has	six	analog	inputs,	each	of	which	provides	1,024	different
values.
TWI:	A4	and	A5	These	pins	support	TWI	(two-wire	interface)	communication	using	the	Wire
library.	This	is	used	to	control	and	communicate	with	an	I2C	device,	such	as	a	serial	LCD	screen,
using	only	two	wires.
RESET	Set	this	to	LOW	to	reset	the	microcontroller.	This	is	typically	used	to	add	a	reset	button.

Don’t	worry	if	this	information	doesn’t	mean	much	to	you	right	now.	You	might	find	it	useful
in	your	future	Arduino	endeavors,	and	you	can	reference	it	as	you	progress	through	the	projects	in
the	book.

Arduino	Project	Handbook	is	set	in	Helvetica	Neue,	Montserrat,	True	North,	and	TheSansMono
Condensed.	The	book	was	printed	and	bound	by	Versa	Printing	in	East	Peoria,	Illinois.	The
paper	is	60#	Evergreen	Skyland.

The	book	uses	a	layflat	binding,	in	which	the	pages	are	bound	together	with	a	cold-set,
flexible	glue	and	the	first	and	last	pages	of	the	resulting	book	block	are	attached	to	the	cover.	The
cover	is	not	actually	glued	to	the	book’s	spine,	and	when	open,	the	book	lies	flat	and	the	spine
doesn’t	crack.

UPDATES
Visit	http://www.nostarch.com/arduinohandbook/	for	updates,	errata,	and	other	information.

More	no-nonsense	books	from	 	NO	STARCH	PRESS

ARDUINO	WORKSHOP
A	Hands-On	Introduction	with	65	Projects

by	JOHN	BOXALL

MAY	2013,	392	PP.,	$29.95
ISBN	978-1-59327-448-1

ARDUINO	PLAYGROUND
Geeky	Projects	for	the	Curious	Maker

http://www.nostarch.com/arduinohandbook/

by	WARREN	ANDREWS

FALL	2016,	350	PP.,	$29.95
ISBN	978-1-59327-744-4

THE	MAKER’S	GUIDE	TO	THE	ZOMBIE	APOCALYPSE
Defend	your	Base	with	Simple	Circuits,	Arduino,	and	Raspberry	Pi

by	SIMON	MONK

OCTOBER	2015,	296	PP.,	$24.95
ISBN	978-1-59327-667-6

JUNKYARD	JAM	BAND
DIY	Musical	Instruments	and	Noisemakers

by	DAVID	ERIK	NELSON

OCTOBER	2015,	408	PP.,	$24.95
ISBN	978-1-59327-611-9

THE	SPARKFUN	GUIDE	TO	ARDUINO
by	DEREK	RUNBERG	and	BRIAN	HUANG

WINTER	2017,	312	PP.,	$29.95
ISBN	978-1-59327-652-2
full	color

THE	MANGA	GUIDE	TO	ELECTRICITY
by	KAZUHIRO	FUJITAKI,	MATSUDA,	and	TREND-PRO	CO.,	LTD.

MARCH	2009,	224	PP.,	$19.95
ISBN	978-1-59327-197-8

PHONE:
800.420.7240	OR
415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:sales@nostarch.com
http://www.nostarch.com

REQUIRES:	ARDUINO	UNO

YOU	GOT	AN	ARDUINO—NOW	WHAT?
Arduino	Project	Handbook	is	a	beginner-friendly	collection	of	electronics	projects	using	the	low-
cost	Arduino	board.	With	just	a	handful	of	components,	an	Arduino,	and	a	computer,	you’ll
learn	to	build	and	program	everything	from	light	shows	to	arcade	games	to	an	ultrasonic
security	system.

First	you’ll	get	set	up	with	an	introduction	to	the	Arduino	and	valuable	advice	on	tools
and	components.	Then	you	can	work	through	the	book	in	order	or	just	jump	to	projects	that
catch	your	eye.	Each	project	includes	simple	instructions,	colorful	photos	and	circuit
diagrams,	and	all	necessary	code.

Arduino	Project	Handbook	is	a	fast	and	fun	way	to	get	started	with	microcontrollers	that’s
perfect	for	beginners,	hobbyists,	parents,	and	educators.

25	STEP-BY-STEP	PROJECTS

•	Pushbutton-Controlled	LED

•	Light	Dimmer

•	Bar	Graph

•	Disco	Strobe	Light

•	Plant	Monitor

•	Ghost	Detector

•	Arduino	Melody

•	Memory	Game

•	Secret	Knock	Lock

•	Joystick-Controlled	Laser

•	Remote	Control	Servo

•	LCD	Screen	Writer

•	Weather	Station

•	Fortune	Teller

•	Reaction	Timer	Game

•	Electronic	Die

•	Rocket	Launcher

•	Intruder	Sensor

•	Laser	Trip	Wire	Alarm

•	Sentry	Gun

•	Motion	Sensor	Alarm

•	Keypad	Entry	System

•	Wireless	ID	Card	Entry	System

•	Rainbow	Light	Show

•	Build	Your	Own	Arduino

THE	FINEST	IN	GEEK	ENTERTAINMENT™
www.nostarch.com

http://www.nostarch.com

	Title page
	Copyright page
	Dedication
	Contents
	Contents in Detail
	Acknowledgments
	Introduction
	The Arduino Revolution
	About this Book
	Organization of this Book

	Project 0: Getting Started
	Hardware
	The Arduino Uno
	Power
	Breadboards
	Jumper Wires

	Programming the Arduino
	The IDE Interface
	Arduino Sketches
	Libraries

	Testing Your Arduino: Blinking an LED
	Understanding the Sketch

	Project Component List
	Setting Up Your Workspace
	Equipment and Tool Guide
	Quick Soldering Guide
	Safety First

	Part 1: LEDs
	Project 1: Pushbutton-Controlled LED
	How It Works
	The Build
	The Sketch

	Project 2: Light Dimmer
	How It Works
	The Build
	The Sketch

	Project 3: Bar Graph
	How It Works
	The Build
	The Sketch

	Project 4: Disco Strobe Light
	How It Works
	The Build
	The Sketch

	Project 5: Plant Monitor
	How It Works
	The Build
	The Sketch

	Project 6: Ghost Detector
	How It Works
	The Build
	The Sketch

	Part 2: Sound
	Project 7: Arduino Melody
	How It Works
	The Build
	The Sketch

	Project 8: Memory Game
	How It Works
	The Build
	The Sketch

	Project 9: Secret Knock Lock
	How It Works
	The Build
	The Sketch

	Part 3: Servos
	Project 10: Joystick-Controlled Laser
	How It Works
	The Build
	Mounting the Laser
	The Sketch

	Project 11: Remote Control Servo
	How It Works
	The Setup
	The Build
	The Sketch

	Part 4: LCDs
	Project 12: LCD Screen Writer
	How It Works
	Preparing the LCD Screen
	The Build
	The Sketch

	Project 13: Weather Station
	How It Works
	The Build
	The Sketch

	Project 14: Fortune Teller
	How It Works
	The Build
	The Sketch

	Project 15: Reaction Timer Game
	How It Works
	The Build
	The Sketch

	Part 5: Numeric Counters
	Project 16: Electronic Die
	How It Works
	The Build
	The Sketch

	Project 17: Rocket Launcher
	How It Works
	The Build
	Create a Working Fuse
	The Sketch

	Part 6: Security
	Project 18: Intruder Sensor
	How It Works
	The Build
	The Sketch

	Project 19: Laser Trip Wire Alarm
	How It Works
	The Build
	The Sketch

	Project 20: Sentry Gun
	How It Works
	The Build
	The Sketch

	Project 21: Motion Sensor Alarm
	How It Works
	The Build
	The Sketch

	Project 22: Keypad Entry System
	How It Works
	Testing the Keypad
	The Build
	The Sketch

	Project 23: Wireless ID Card Entry System
	How It Works
	The Build
	The Sketch

	Part 7: Advanced
	Project 24: Rainbow Light Show
	How It Works
	The Build
	The Sketch

	Project 25: Build Your Own Arduino!
	How It Works
	Preparing the Chip
	Building the Arduino Circuit

	Appendix A: Components
	Components Guide
	Arduino Uno R3
	9V Battery Pack
	Breadboard
	LED
	Resistor
	Pushbutton
	Potentiometer
	HL-69 Soil Sensor
	Piezo Buzzer
	Servomotor
	Joystick
	Infrared LED Receiver
	LCD Screen
	DHT11 Humidity Sensor
	Tilt Ball Switch
	RGB LED
	Seven-Segment LED Display
	Four-Digit, Seven-Segment Serial Display
	Ultrasonic Sensor
	Photoresistor
	RC V959 Missile Launcher
	PIR Sensor
	Keypad
	RFID Reader
	RGB Matrix
	Shift Register
	ATmega328p Chip
	16 MHz Crystal Oscillator
	5V Regulator
	Capacitor
	Disc Capacitor
	Battery Clip

	Retailer List
	Decoding Resistor Values

	Appendix B: Arduino Pin Reference
	Updates
	You Got an Arduino—Now What?

